Respiration
Introduction & Measurement

Mark Ritenour
Indian River Research and Education Center, Fort Pierce
Jeff Brecht
Horticultural Science Department, Gainesville

Important Organic Compounds
• Four major groups:
 – Nucleic acids
 – Proteins
 – Lipids
 – Carbohydrates
• Also of note are the phenolics

Nucleic Acids
• Genetic information = Polymers of nucleotides
 – RNA = ribonucleic acid
 – DNA = deoxyribonucleic acid

http://www.alzheimers.org/rmedia/IMAGES/high/DNA_HIGH.JPG
Amino Acids & Proteins
- Comprise up to ~ 30% of plant DW
 - Some seeds may have as much as 40% DW protein – storage
- Proteins – important biological polymers
 - Storage proteins
 - Structural components
 - Enzymes

Lipids
- Main membrane constituent
- Long term energy storage
 - Can be converted to carbohydrates in plants via the glyoxylate cycle
- Structural components
 - Cuticle

Carbohydrates
- General formula
 - \((\text{CH}_2\text{O})_n\)
- Primary energy storage compounds
 - Short term storage - sugars
 - Intermediate term storage - starch
Carbohydrates
- Also important structural component
 - E.g. cell walls: cellulose, hemicellulose, & pectin
- Direct products of photosynthesis

Phenolic Compounds
- General classes:
 - lignin, tannins, flavonoids, coumarins, etc.
- Most formed from the amino acid phenylalanine
- Important impacts on produce quality:
 - Lignin (texture)
 - Browning reactions (color)
 - Astringency (taste)
 - Phytoalexins (defense)

Carbon Metabolism
- Carbon cycles through photosynthesis and respiration

\[
\text{Photosynthesis: } \text{CO}_2 + \text{H}_2\text{O} + \text{Energy (light)} \rightarrow \text{Carbohydrates} \]

\[
\text{Respiration: } \text{O}_2 + \text{Carbohydrates} \rightarrow \text{CO}_2 + \text{H}_2\text{O} + \text{Energy (ATP)}
\]
Carbon Metabolism

- Photosynthesis – occurs in chloroplasts (chlorophyll) mostly in the green leaves
- Carbohydrates produced in leaves are translocates throughout the plant (phloem)
- Carbohydrates are oxidized at destination sites to release energy. \(\text{CO}_2 \) & water = RESPIRATION

\[
\text{Sugar} + \text{O}_2 \rightarrow \text{CO}_2 + \text{Water} + \text{Energy} + \text{Heat}
\]

Adenosine Triphosphate (ATP)

- Adenosine triphosphate (-P-P-P)
 - Energy is stored in each P bond
- Intermediate energy molecules
 - analogous to rechargeable batteries

Respiration & Heat

- First Law of Thermodynamics:
 - Energy can not be created or destroyed
 - Thus, total energy at the beginning of a reaction must equal energy at the end
Use of Energy

- During carbohydrate oxidation (respiration), energy (ATP) & heat are produced
 - ATP molecules are intermediate energy molecules that are easily transported within a cell to sites of action
 - At sites of action, ATP is coupled to different processes to "power" them
 - Energy that is not captured as ATP (or other molecule), or is not completely used up in a biological process is lost as heat

Respiration & Heat

- Respiration creates 30 ATP per glucose molecule, but 686 kcal total energy
 - 1 ATP = ~ 12 kcal
 - 12 kcal * 30 ATP = 360 kcal
 - 686 kcal - 360 kcal = 326 kcal lost as heat
- If not removed, lost energy will raise the cell/tissue temperature
 - Heat pumps (refrigeration) move heat from one place to another (e.g., from inside to outside of the rooms)

Thermodynamics - 2nd law

- Entropy (disorder) of a system will always increase with time
- Biological systems are very ordered (low entropy) and maintain their order by making their environment more disordered
 - Organisms expend energy to counteract the natural tendency to disorganize
 - Without a constant energy supply, organisms would disorganize and die
- Living organisms are never at equilibrium
Thermodynamics - 2nd law

• When commodities are detached from the plant, they are severed from their food (energy) supply must live on what they have stored
 – The less reserves they have stored, the shorter their postharvest life

Respiration Overview

• Respiration is composed of three parts:
 – Glycolysis – located in the cytosol
 – Krebs cycle – located in the mitochondria matrix
 – Electron Transport System (ETS) – located on the inner mitochondria membrane
• Respiration is central to overall cell metabolism, such as synthesis of important compounds

“Fuel” for Respiration

• Fuel sources:
 – Starch
 – Sugars (glucose, fructose)
 – Organic acids
 – Sometimes amino acids
 – Sometimes lipids (fats)
Breakdown of Storage Compounds for Energy Release

- **“Complex” Storage Compounds**
 - Polysaccharides e.g. Starches
 - Fats & Oils (Triglycerides)
- **“Simple” Storage Compounds**
 - Monosaccharides e.g. glucose (6C)
 - Fatty Acids
 - Amino Acids
- **Smaller Carbon Compounds**
 - Pyruvate (3C compounds)
 - Acetyl CoA (2C compound)
- **Organic Acids**
 - CO₂
 - H₂O

Electron Transport System (ETS)

Breakdown

- Amylases (& Phosphorylases)
- Lipases
- Proteinase (Proteases)

Glycolysis

- **Processing (Glycolysis)**
 - Occurs in the cytosol
 - Converts carbohydrate “fuel” into pyruvate that will be transported to the mitochondria and used by the Krebs cycle
 - Also produces a little ATP (8 per glucose)

Glycolysis

- *Glucose* → *Fructose 6-p* → *Fructose 1,6-diphosphate* → *Dihydroxyacetone p* → *
 (2) Glyceraldehyde 3-p* → *
 (2) 1,3-diphosphoglycerate* → *
 (2) 3-phosphoglycerate* → *
 (2) 2-phosphoglycerate* → *
 (2) Phosphoenolpyruvate* → *
 (2) Pyruvate → To Mitochondria & Krebs cycle*
Krebs (or TCA) Cycle
- Furnace & Turbines (Krebs or TCA cycle)
 - Occurs in the mitochondria (powerhouses of the cell)
 - Produces NADH and FADH₂ that are used to make ATP
 - Produces a little ATP directly
 - Produces CO₂

ETS
- Generator (ETS [Electron Transport System])
 - ETS is located on the mitochondrial inner membrane
 - Products from the Krebs cycle are used to make ATP
 - Requires Oxygen (O₂)
 - In the process, electrons are ultimately passed to oxygen (final e⁻ acceptor)
Anaerobic Respiration

- Anaerobic respiration = without O₂
 - Also called fermentation
- Without O₂, normal ETS cannot function and the pathways backs up (at pyruvate)
- Glycolysis can still function
 - Pyruvate is shunted off to make Ethanol or Lactic Acid
- Only 2 ATP formed per glucose
 - Compared to 30 in aerobic respiration

Cyanide Resistant Pathway

- Many plant tissues have a cyanide resistant pathway (or alternative oxidase pathway)
 - Produces only ~ 1/3 the ATP of the normal pathway (complexes 3 & 4 are bypassed)
 - The loss in efficiency results in much greater heat production
 - In arum spadices, the cyanide resistant pathway increases tissue temperature up to 10°C
- May serve as a stress mechanism to supply carbohydrate metabolites &/or minimize ROS (reactive oxygen species) production
Measuring Respiration

- Measure loss of substrates, or appearance of products
 - Loss of carbohydrates (dry weight)
 - Measure of gas exchange
 - Loss of oxygen (O₂) Ambient concentration = ~21%
 - Appearance of carbon dioxide (CO₂) Ambient concentration ~0.03% (& increasing)
 - Production of heat

Dry Weight Loss

\[
\text{Rate of Dry Wt. Loss} = \frac{\text{Respiration Rate (mg CO₂/kg-hr)}}{1000 \text{ mg/g}} \times \frac{180}{264}
\]

\[
\% \text{ of Dry Wt. Loss per hr.} = \text{Respiration Rate (mg CO₂/kg-hr)} \times 68.2 \times 10^{-6}
\]

- E.g. Onions held at 30°C (respiration = 35 mg CO₂/kg-hr) will loose 1.72% dry wt. per month (30 d)

Measuring Gas Exchange

- Static System
 - Tissue is placed in a sealed container and the loss of O₂ or increase of CO₂ are measured
 - Measure over brief periods so that CO₂ does not accumulate above 0.2% (can inhibit respiration)
Measuring Gas Exchange

- **Static System**
 - Easy to use and does not depend on a flow rate. However, any leaks (even small ones) will result in large errors.

- **Flow-Through System**
 - Tissue is placed in a container and a flow of known gases (often air) are passed through.

 - O₂ uptake and CO₂ production is calculated by measuring the concentration differences between the inlet and outlet and knowing the gas flow rate.
 - Small leaks are not critical (due to positive pressure) and gas concentrations are not altered far from ambient.
 - However, it is more involved to set up.
Heat Production

- Newer, more sensitive & precise equipment now allows respiration via this technique