

QUALITY MAINTENANCE:
Harvest & Handling

The focus was on two primary concerns:

Minimizing mechanical injury

Cooling rapidly

2

OPTIMIZING TEMPERATURE MANAGEMENT

High-quality fruits and vegetables can be successfully marketed,

- however:
 Greater care is necessary during harvest and handling operations to minimize damage
 - Use appropriate harvest containers
 - Carefully train & supervise workers
- Effective cooling methods are critical
 - Avoid delays in field, packinghouse
 - Cool rapidly & thoroughly

3

This is NOT Cooling

5 6

Cooling and Storage

- Determine optimal conditions
 - Storage temperature; relative humidity
 - Cooling method; atmosphere
- Rapidly cool within a few hours of harvest (7/8 Cooling)
- Cool efficiently

Unload Cold Room Packing Line Unloading **→** Wash Rinse Bin/Pallet Sort Area Dry Reefer Room Loading Reefer Suggested floor plan of packinghouse.

13 14

3) Effective Cooling

Storage conditions for maximum shelf life are crop-dependent:

- Lowest Safe Temperatures for Tropical Fruits:

 - 53 °F (mango; avocado; mamey sapote)
 - 57 °F (banana)
- Relative Humidity: 90 to 95%

15 16

- - 39 °F (lychee)
 - 41 °F (carambola)

 - 58 °F (pineapple)
- Shelf life: 2 to 4 weeks

Cooling in the good 'ole days Pony reefers were used to transport the strawberries to northern markets. These were actually two crates, one inside the other. The outside crate held a layer of ice, and the inside crate held the fruit. Dec. 1926. (Photo courtesy of Gulf Coast Research & Education Center.)

3) Effective Cooling Storage conditions for maximum shelf life are crop-dependent: • Lowest Safe Temperatures for Vegetables: 32 °F (broccoli; lettuce; sweetcorn;) 40 °F (snap bean) 45 °F (bell pepper; chayote) 50 °F (basil; cucumber; okra) 53 °F (mature-green tomato) • Relative Humidity: 90 to 95% • Shelf life: 1 to 4 weeks

Cooling rate is determined by the 3 T's:

- •Time of exposure to the cooling medium •Longer = cooler
- Temperature of the cooling medium •Lower = faster
- Turbulence (contact & mixing)

•Better contact = faster

17 18

Cooling rate for commercial hydrocooling of strawberries probe 6 (upper mid water probe 8 (lower mid right) probe 6 (upper mid water) probe 7 (lower mid) - - 7/8 cooling Time (minutes)

39

42 41

43

45

47 48

61 6

