Effects of Preharvest Fungicides on Postharvest Decay of Fresh Citrus

James Salvatore and Dr. Mark A. Ritenour UF/IFAS Indian River REC

The Need

- Control of postharvest decay is always a concern.
- Many factors influence the potential for decay development:
 - Preharvest field conditions
 - Harvesting practices
 - Postharvest temperatures, relative humidity, exposure to ethylene, etc.

Purpose

- To determine the most effective preharvest fungicide or compound available to control postharvest decay.
 - Especially important for early season decay from Diplodia stem-end rot, anthracnose, and brown rot (*Phytophthora*).

Previous Studies – 1999-2004

- Topsin M (Thiophanate-methyl) 2 lb/acre
- Benlate (Benomyl) 2 lb/acre
- Kocide DF (Copper) 4 lb/acre
- Abound (Azoxystrobin) 16 oz/acre
- Enable (Fenbuconazole) 8 oz/acre
- Aliette (Fosetyl-Al) 5 lb/acre
- Phosphorous acid (Nutriphite or Phostrol) 4 pints/acre
- Pristine 18.5 oz/acre
- Actigard (Acibenzolar-S-methyl) 100ppm + 0.025% Silwet.
- Headline (Pyraclostrobin) 16 oz/acre
- Scholar (Fludioxonil) 8oz/acre

Methods 1999-2004

- Materials applied at 125 gal/acre.
- Fruit harvested 2 days and then 2 to 3 weeks after spray application.
- Fruit was degreened if necessary, washed and waxed (shellac).
 - No additional fungicides used or added to the wax.
- Stored at 50°F with 95% RH until evaluated.

Results: 1999-2001 Stem-end rot (%)

	'Fallglo'		'Sunburst'		'Marsh'	
4 Nov. 1999 ^z	18 Sept. 2000		11 Dec. 2000		16 Mar. 2001	
23 Nov. ^y	20 Sept.	9 Oct.	13 Dec.	21 Dec.	19 Mar.	2 Apr.
58 d ^x	34 d	78 d	77 d	41 d	86 d	79 d
11.3	0.5	63.8	16.8 a ^w	10.4 b	34.6 a	37.3 ab
11.6						
	0.9	73.2	15.3 a	8.8 b	49.2 a	42.4 a
18.8	0.0	65.6	15.8 a	14.1 b	36.5 a	45.5 a
14.1	0.4	57.6	14.0 a	7.2 b	30.0 a	31.1 abc
13.4	1.4	77.0	18.8 a	19.9 ab	30.3 a	21.5 bc
18.1	0.0	72.0	11.5 a	31.9 a	39.2 a	25.0 bc
	0.5	56.9	13.5 a	18.8 ab	36.7 a	35.5 ab
1.6	0.0	65.2	0.5 b	0.5 c	2.9 b	17.2 c
NS	NS	NS	***	***	***	**
	23 Nov. ^y 58 d ^x 11.3 11.6 18.8 14.1 13.4 18.1 1.6	23 Nov. ⁹ 20 Sept. 58 d ⁴ 34 d 11.3 0.5 11.6 0.9 18.8 0.0 14.1 0.4 13.4 1.4 18.1 0.0 0.5 1.6 0.0	23 Nov. ² 20 Sept. 9 Oct. 58 d ⁴ 34 d 78 d 11.3 0.5 63 8 11.6 0.9 73.2 18.8 0.0 656 14.1 0.4 57.6 13.4 1.4 77.0 18.1 0.0 75.0 0.5 55.9 1.6 0.0 65.2	23 Nov. ³ 20 Sept. 9 Oct. 13 Dec. 58 d ⁴ 34 d 78 d 77 d 11.3 0.5 63.8 168.8 ^a 11.6 0.9 73.2 15.3 a 18.8 0.0 65.6 15.8 a 14.1 0.4 57.6 14.0 a 13.4 1.4 77.0 18.8 a 18.1 0.0 72.0 11.5 a 0.5 56.9 13.5 a 1.6 0.0 65.2 0.5 s	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

*Days after harvest for final decay evaluation

^wValues within each column followed by unlike letters are significantly different by Duncan's multiple NS,**,***Nonsignificant or significant at $P \leq 0.01$, or 0.001, respectively.

Results: 2001-2003											
Stem-end rot (%)											
		burst'		arsh'	'Val	encia'	Navel	Ruby	Red'	'Mu	cott'
		. 2001 ^z		b. 2002		r. 2002	21 Oct. 2002	14 Nov			2003
		18 Dec.	27 Feb.	11 Mar.	25 Apr.	6 May.	28 Oct.	21 Nov.		11 Feb.	
Compound	81 d ^x	84 d	118 d	123 d	133 d	122 d	67 d	123 d	109 d	59 d	56 d
Control	16.8	33.9	37.3 a ^w	25.2 a	25.5	30.4 a	32.2 a	15.7 a	10.3	10.0 a	20.9
Pyraclostrobin	11.3	17.4	30.1 ab	15.9 ab	25.8	36.8 a					
Phosphorous acid	12.8	22.8	24.7 ab	12.0 abc	23.9	31.0 a					
Thiophanate methyl Benomvl	9.4 10.3	12.6 12.2	10.7 c 19.6 bc	4.1 c 7.9 bc	13.6 10.9	9.2 b 10.1 b	9.4 b 11.6 b	4.6 b 7.8 b	4.3 4.5	4.1 b 3.1 b	1.5 2.7
Significance	10.5 NS	12.2 NS	19.6 DC **	7.9 DC **	10.9 NS	10.1 D ***	**	**	4.3 NS	*	**
Application date. Harvest date.					.10						
Days after harvest for	final deca	y evaluatio	on.								
Values within each co							can's multiple ra	inge test a	P ≤ 0.05	5.	

Treated 10.20.04	Red	GFT	
Harvested 10.22.04	Stored		
Treatment	Stem end rot	Anthracnose	% Decay
Headline	13.1	6.5 d	18.6
Pristine	11.6	12.2 cd	24.4
Topsin	4.8	13.5 cd	18.3
Scholar	17.5	15.5 cd	31.5
Benlate	7.5	20.1 bcd	19.6
Abound	11.9	22.6 abc	26.9
Phostrol	12.8	33.6 ab	45.0
Control	6.9	41.5 a	33.4

Materials and Methods

- Fungicides were applied at a rate of 125 gpa
- Trees were sprayed until run-off using a Stihl
 backpack sprayer. (Prior studies were applied using an air blast sprayer)

- Sprays were applied on 11/4/05 and fruit was harvested on 11/9/05.
- USDA 77-19 Grapefruit Hybrid
- Half of the fruit was de-greened at 4ppm Ethylene, 85F and 90% RH.
- Fruit was not washed or waxed.
- Stored in cold rooms at 58F and evaluated every 2 weeks for decay.
- New formulation added: Topsin F
 40 oz/A (Equivalent to 2lbs/A of Topsin M)

Results: 2005 USDA 77-19

Harvested 11.09.05	Stored	28 d	
Treatment	Stem end rot	Anthracnose	% Decay
Topsin F	1.5 cd	5.8 b	7.0 d
Topsin M	3.9 bc	13.6 ab	16.8 c
Benlate	1.7 c	15.8 ab	17.4 bc
Headline	8.4 b	11.1 ab	19.1 bc
Pristine	8.6 b	22.0 a	29.7 ab
Phostrol	19.3 a	13.7 ab	31.3 a
Control	19.5 a	18.5 a	36.0 a

Conclusions

- Benlate & Topsin were the most consistent product we have tested.
- Both Benlate & Topsin showed a significant reduction of stem end rot & increase in healthy fruit after storage.
- Aliette, Abound, Enable, Actigard, and Kocide were never significantly better than the control.
- Benlate occasionally reduced Anthracnose prior to 2004.
 - Headline, Benlate, and Topsin significantly reduced the incidence of Anthracnose in 2004 and Topsin F in 2005

Conclusions

- In the only test with Topsin F in 2005, it reduced stem-end rot, Anthracnose, and total decay more than the other fungicides.
- Further trials of Topsin F in grapefruit and other citrus varieties are planned.

Thank You

- Dr. Greg McCollum USDA/ARS Ft. Pierce
- Barney Greene, Greene Citrus
- Mike Burton & Bob Pelosi UF/IFAS
- Website: <u>http://postharvest.ifas.ufl.edu</u>