

The Need

- Control of postharvest decay is always a concern.
- Many factors influence the potential for decay development:
 - -Preharvest field conditions.
 - Harvesting & handling practices.
 - Postharvest temperatures, relative humidity, exposure to ethylene, etc.

Options?

- Preharvest No reliable replacement yet for Benlate or Topsin.
 - Copper, Aliette, and Phosphorous acid products to reduce Brown rot.
- Postharvest control measures.
 - Good sanitation practices
 - Careful handling
 - Use of fungicide
 - Must be effective against latent organisms such as Diplodia and Anthracnose

Currently Registered Fungicides for Citrus Postharvest Treatments

- Thiabendazole (TBZ)
- Imazalil
- Sodium o-phenylphenate (SOPP)
- Fludioxonil (Graduate)
- Fludioxonil + azoxystrobin (Graduate A+)
- Pyrimethanil (Penbotec)

Postharvest Fungicide MRLs								
Chemical Name	U.S. (Citrus)	Canada (Citrus)	(Citrus)	EU (Citrus)	Japan (G & O)	Taiwan (G & O)	Korea (G & O)	
Azoxystobin	15	10	15	15	No Food Additive Status	10	7 (G); 5 (O)	
Fludioxonil	10	10	10	10	10	5	10 (G); 5 (O)	
Imazalil	10	5	5	5	5	2	5	
Pyrimethanil	10; 11 (L)	10	7	10	No Food Additive Status	7	1	
SOPP (2 Phenylphenol, O- phenylphenol)	10	10	10	Expiring 9/30/12	10		10	
Thiabendazole (TBZ)	10	10	7	5	10	10	10	

Thiabendazole (TBZ)

- Controls stem-end rot and green mold.
 - Some effectiveness against anthracnose.
 - Does not control sour rot or black rot.
- Recommended concentrations:
 - 1000 ppm (0.1%) as a water suspension.
 - 2000 ppm (0.2%) in a water-based wax.
- Not very soluble in water.
 - Constant agitation required.
- Include a sanitizer (e.g., chlorine) with recirculated solutions.

Imazalil

- · Especially effective against green mold.
 - Diplodia and Phomopsis generally less effective than TBZ.
 - Some activity against black rot.
 - Ineffective against sour rot and brown rot.
- Recommended concentrations
 - 1000 ppm (0.1%) as a water suspension
 - 2000 ppm (0.2%) in a water-based wax
- Not compatible with chlorine.
- Imazalil is on CA's Prop 65
 - list of substances known to the State to Cause Cancer
 - No Significant Risk Level (NSRL) = 11 μg/day

SOPP

- Sodium o-phenylphenate, also called
 - 2 Phenylphenol
 - O-phenylphenol (OPP)
- Effective against green mold & sour rot.
 - Little to no control of Diplodia or Phomopsis stem-end rot, or black rot.
- Recommended concentration:
 - 2% aqueous solution, pH at 11.5–12.0 is the most effective treatment.
 - Some include 0.2% sodium hydroxide for pH control, and 1% hexamine to minimize phytotoxicity.

Fludioxonil

- Effective against green mold and Diplodia stem-end rot.
- Much less green mold sporulation control compared to imazalil.
- Compatible with chlorine.

Fludioxonil + Azoxystrobin

- · Graduate A+
- · Good sporulation control.

Treatment	Diplodia (%)	Total decay (%)	
Control	14.36a	23.19a	Harvested Sept. 24, 200
TBZ (1000 ppm)	4.31 b	11.74b	riaivested dept. 24, 200
Imazalil (500 ppm)	5.65b	11.94b	Dipped 10 sec. in respec
Graduate A+ (600 ppm)	5.00b	11.25b	solution (all included 10 ppm chlorine except Imazalil),
Graduate A+ (1,200 ppm)	1.35b	4.58b	Degreened for 5 d (85F,
TBZ (1,000 ppm) + Graduate A+ (300 ppm)	5.93b	7.96b	95% RH, 5 ppm ethylene Washed & waxed (carnauba) and stored a
TBZ (1,000 ppm) + Graduate A+ (600 ppm)	1.32b	5.04b	ambient temperatures for 35 d.
Significance	***	*	

Acknowledgments

- Jan Narciso
- Cuifeng Hu
- Sambhav
- Jordan Yancy
- Monty MyersAndrew Myers
- Kendra Thomason
- Kayla Thomason

Thank You!

For more information,
visit the UF Postharvest Website

http://irrec.ifas.ufl.edu/postharvest/