Figure 13c. Comparison of solids-acid ratios of lead arsenate sprayed (1 lb per 100 gal) and unsprayed 'Marsh' and 'Duncan' grapefruit on rough lemon (RL) and sour orange (SO) stocks at 27 locations. (Values are averages for 1939-40 through 1942-43 seasons. Sample dates are about 4 days.) (Harding FSHS 78. 1945.)
Figure 15. Effect of direction of exposure and shading on total soluble solids (%) of 'Valencia' oranges (Sites and Reitz, 1949a).
Figure 16. Effect of direction of exposure and shading on titratable acid (%) of 'Valencia' orange (Sites and Reitz, 1949b).
Figure 17. Effect of direction of exposure and shading on total soluble solids: titratable acid ratio of 'Valencia' oranges (Sites and Reitz, 1949b).
Figure 18. Effect of direction of exposure and shading on juice content (% by weight) of 'Valencia' oranges (Sites and Reitz, 1950).
Figure 19. Effect of direction of exposure and shading on vitamin C (mg per 100 ml juice) of 'Valencia' oranges (Sites and Reitz, 1950).
Table 9. Effect of oil-emulsion and parathion sprays on composition of 'Hamlin' and 'Parson Brown' oranges (Harding 1953)

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Applied</th>
<th>Total soluble solids (%)</th>
<th>Total acid (%)</th>
<th>Solids-acid ratio</th>
<th>Juice per fruit (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil-emulsion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>9.95 x</td>
<td>0.745 x</td>
<td>13.4</td>
<td>56.5 z</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>9.65 x</td>
<td>.73 x</td>
<td>13.2</td>
<td>56.5 z</td>
<td></td>
</tr>
<tr>
<td>June + August</td>
<td>9.25 x</td>
<td>.715 x</td>
<td>12.9</td>
<td>56 z</td>
<td></td>
</tr>
<tr>
<td>Parathion</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>10.35 z</td>
<td>.785 z</td>
<td>13.2</td>
<td>56 z</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>10.30 z</td>
<td>.78 z</td>
<td>13.3</td>
<td>55.5 y</td>
<td></td>
</tr>
<tr>
<td>June + August</td>
<td>10.55 z</td>
<td>.80 z</td>
<td>13.2</td>
<td>55 x</td>
<td></td>
</tr>
<tr>
<td>None (control)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10.20 z</td>
<td>.78 z</td>
<td>13.1</td>
<td>56 z</td>
<td></td>
</tr>
</tbody>
</table>

Values are means of 48 sets of measurements, 40 of 'Hamlin', 8 of 'Parson Brown', from 4 sampling dates, 6 locations and 1949-50 and 1950-51 seasons. x different from z at .01 level and y different from z at .05 level (Calculated on basis of LSD)

1.25% cream-type (90%) oil or 2 lb 15% WP parathion plus 5 lb wettable sulfur per 100 gal. applied as thorough coverage.

Values rounded to nearest 0.05, 0.005 or 0.5, respectively.
Table 10. Total soluble solids, total acid, solids-acid ratio and juice content of 'Valencia' oranges in 5 light classes (Sites and Reitz, 1949, 1950)z.

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Light Class</th>
<th>Outside</th>
<th>Canopy</th>
<th>Inside</th>
<th>Top Outside</th>
<th>Top Inside</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total soluble solids (%)</td>
<td></td>
<td>(500)</td>
<td>(580)</td>
<td>(321)</td>
<td>(250)</td>
<td>(137)</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>11.08</td>
<td>10.01</td>
<td>8.70</td>
<td>11.21</td>
<td>9.93</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>8.40</td>
<td>5.90</td>
<td>6.00</td>
<td>9.50</td>
<td>8.50</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>13.40</td>
<td>12.50</td>
<td>11.75</td>
<td>13.50</td>
<td>12.00</td>
</tr>
<tr>
<td>Total acid (%)</td>
<td></td>
<td>(509)</td>
<td>(582)</td>
<td>(323)</td>
<td>(254)</td>
<td>(135)</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.882</td>
<td>0.911</td>
<td>0.858</td>
<td>0.877</td>
<td>0.859</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>0.50</td>
<td>0.54</td>
<td>0.58</td>
<td>0.59</td>
<td>0.57</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>1.37</td>
<td>1.39</td>
<td>1.25</td>
<td>1.28</td>
<td>1.25</td>
</tr>
<tr>
<td>Solids:acid ratio</td>
<td></td>
<td>(509)</td>
<td>(582)</td>
<td>(323)</td>
<td>(254)</td>
<td>(135)</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>12.56</td>
<td>10.99</td>
<td>10.14</td>
<td>12.78</td>
<td>11.56</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>8.54</td>
<td>4.80</td>
<td>5.71</td>
<td>9.69</td>
<td>8.92</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>21.00</td>
<td>16.50</td>
<td>14.47</td>
<td>18.47</td>
<td>16.41</td>
</tr>
<tr>
<td>Juice content (% by weight)</td>
<td></td>
<td>(510)</td>
<td>(579)</td>
<td>(323)</td>
<td>(254)</td>
<td>(135)</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>49.60</td>
<td>49.60</td>
<td>47.70</td>
<td>49.31</td>
<td>48.68</td>
</tr>
<tr>
<td>Minimum</td>
<td></td>
<td>36.7</td>
<td>35.8</td>
<td>32.7</td>
<td>43.5</td>
<td>41.1</td>
</tr>
<tr>
<td>Maximum</td>
<td></td>
<td>65.8</td>
<td>59.9</td>
<td>65.1</td>
<td>55.2</td>
<td>55.2</td>
</tr>
</tbody>
</table>

zValues in parentheses are number of fruit sampled; total number of fruits were 1788, 1803, 1803, 1801 for total soluble solids, total acid, solids:acid ratio and juice content, respectively. Correlations of all light classes with total soluble solids and ascorbic acid, inside fruit with titratable acid, and outside fruit with juice content were highly significant (0.01) and of canopy and all fruit, significant (0.05), as determined with Student's "t" test.
Table 11. Effects of spot-picking on average total soluble solids (Modified from Sites and Reitz, 1949a).

<table>
<thead>
<tr>
<th>Section of tree picked a (light class)</th>
<th>Proportion of total crop (%)</th>
<th>Average total soluble solids (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TO, TI, O, C</td>
<td>100.0</td>
<td>10.24</td>
</tr>
<tr>
<td>O + C + I</td>
<td>82.</td>
<td>10.57</td>
</tr>
<tr>
<td>O + I + TI</td>
<td>92.3</td>
<td>10.26</td>
</tr>
<tr>
<td>O + C</td>
<td>67.6</td>
<td>10.34</td>
</tr>
<tr>
<td>O</td>
<td>74.4</td>
<td>10.64</td>
</tr>
<tr>
<td>O + TI + C - 2 ft</td>
<td>41.9</td>
<td>10.12</td>
</tr>
<tr>
<td>O + TI + C - 4 ft</td>
<td>79.9</td>
<td>10.60</td>
</tr>
<tr>
<td>TO + O + TI + C - 6 ft</td>
<td>77.3</td>
<td>10.64</td>
</tr>
<tr>
<td>TO + TI + C - 6 ft + O - 2 ft</td>
<td>73.9</td>
<td>10.69</td>
</tr>
<tr>
<td>TO + TI + C - 6 ft + O - 4 ft</td>
<td>73.6</td>
<td>10.70</td>
</tr>
<tr>
<td>TO + TI + C - 6 ft + O - 6 ft</td>
<td>73.3</td>
<td>10.70</td>
</tr>
</tbody>
</table>

a Abbreviations: TO = top outside, O = outside, I = inside, TI = top inside, C = canopy, C - 2 ft = canopy less lower 2 ft, O - 2 ft outside less lower 2 ft, etc.
Citrus Maturity and Packinghouse Procedures
Preharvest Modifiers of Fruit Quality (cont.)

Selected References

Climate
1949. Bain, F. M.
 Citrus and climate (2 parts). Calif. Citrog. 34(9):382, 412-414; 34(10): 426, 448-449
1955. Caprio, J. M.
 Temperature effects on acid brix in Washington Navel oranges Calif. Citrog. 47:132-134.
 Climate and citrus behavior. Chap. 9. In The citrus industry, W. Reuther, ed., Division of Agricultural Sciences, Univ. of California, Berkeley, CA., Vol. III.
Soils, Mineral Nutrition

Sites, J. W., I. W. Wander and E. J. Deszyck.

Smith, P. F.

Bryan, O C.

Reitz, H. J. and R. C. J. Koo.

Reitz, H. J. and R. C. J. Koo.

1967. Smith, P. F.
Yield expectancy and the basis of citrus fertilization.

1968. Chapman, H. D.
Mineral nutrition of citrus. Chap. 3. In The citrus industry
W. Reuther, L. D. Batchelor and H. J. Webber, eds. Division
of Agricultural Sciences, Univ. of California, Berkeley, CA.,
Vol. II

III:1513-1711. (Symposium of 21 papers.

Citrus fertilization. Chap. 5. In The citrus industry,
W. Reuther, ed., Division of Agricultural Sciences, Univ. of
California, Berkeley, CA. Vol. III.

Sprays

Scalicides

Relationship of solids and ratio to timing of oil sprays on

A comparison of parathion and oil sprays in regard to their
effect on the internal quality of citrus fruit. Citrus Mag.
12(8):30-33.

1953. Harding, P. L.
Effect of oil emulsion and parathion spray on composition

Effect of oil and parathion sprays on orange size and
Citrus Maturity and Packinghouse Procedures
Preharvest Modifiers of Fruit Quality (cont.)

Fisher, F. E.

Arsenicals

1933. Florida Dept. of Agr.

Longfield-Smith, L.

1945. Harding, P. L.

Reitz, H. J

1957. Deszyck, E. J. and S. V. Ting.
Citrus Maturity and Packinghouse Procedures

Preharvest Modifiers of Fruit Quality (cont.)

1959. Singleton, G.

Organic acid changes in developing citrus fruits as affected by arsenate. Plant Physiol. 40 (suppl.) XVII.

Physiological Sprays for Fruit Drop, Size and Set

The experimental use of 2, 4-D sprays to increase orange and grapefruit size. Citrus Leaves. 29(5):14–15.

Effects of 2,4-D and related substances on fruit drop, yield, size and quality of grapefruit. Hilgardia 22(18):632–641.
Citrus Maturity and Packinghouse Procedures
Preharvest Modifiers of Fruit Quality (cont.)

Sites, J. W.

Hield, H. Z. and W. S. Stewart.
2,4-D and 2,4,5-T as fruit sizing sprays for oranges and grapefruit. Citrus Leaves. 36(2):10-11, 22, 26, 28.

Coggins, C. W., Jr., H. Z. Hield and S. B. Boswell.

Krezdorn, A. H. and M. Cohen.

Ismail, M. A., R. H. Biggs and M. F. Oberbacher.

Coggins, C. W., Jr.
Citrus Maturity and Packinghouse Procedures

Preharvest Modifiers of Fruit Quality (cont.)

Physiological Sprays for Abscission (see Mechanical Harvesting, Chapter VIII)

Water Relations

Grierson, W. and R. C. J. Koo.

Peel injury of tangerines as influenced by water relations in the grove and subsequent handling practices. Citrus Mag. 21(2):8-10.

Grierson, W., M. F. Oberbacher and W. L. Thompson.

Koo, R. C. J.

Irrigation. Chap. 8., In W. Reuther (ed.) The citrus industry Division of Agricultural Sciences, Univ. of California, Berkeley, CA. Vol. III.

(also see papers by Albrigo in Chapter IV and VII)

Pruning

Dennis, J. A.

Citrus Maturity and Packinghouse Procedures

Preharvest Modifiers of Fruit Quality (cont.)

Shamel, A. D. and C. S. Pomeroy.

1961. Krezdon, A. H.

Norris, R. E.

Lewis, L. N. and C. D. McCarty.
Pruning and girdling of citrus. Chap. 7. In W. Reuther (ed.) The citrus industry, Division of Agricultural Sciences, Univ. of California, Berkeley, CA. Vol. III.

Variation of Individual Fruit on a Tree

