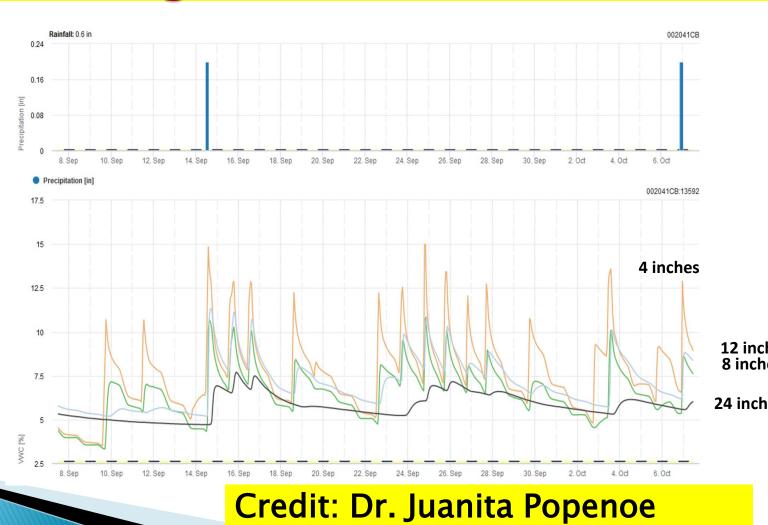
IRRIGATION MANAGEMENT CONSIDERATIONS FOR CITRUS

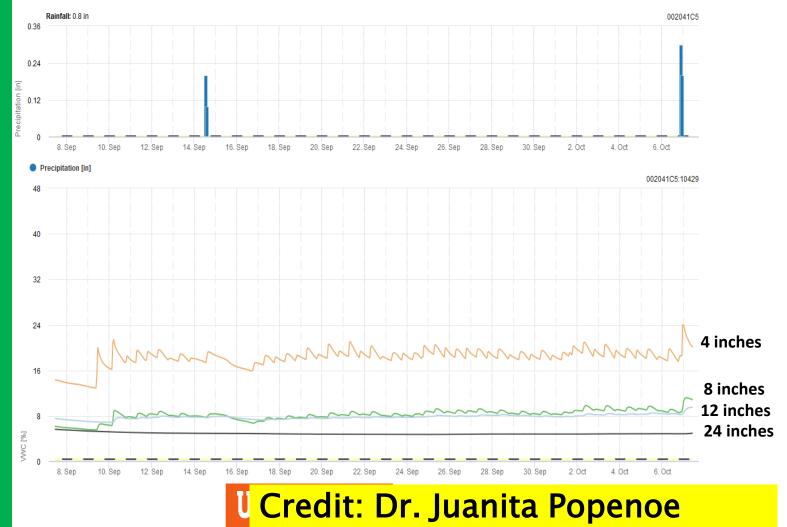
Davie Kadyampakeni Citrus Water and Nutrient Management Specialist CREC, UF/IFAS, Lake Alfred E-mail: <u>dkadyampakeni@ufl.edu</u> January 22, 2020

Introduction

- Irrigation management critical for improved citrus production
- Optimizing soil health through use of soil amendments seems to be a good strategy for increasing tree performance.
- Monitoring soil water, temperature and electrical conductivity is helpful in improving irrigation efficiency.

Promising results on soil amendments and cover crops, observations from Leesburg


	Organic matter
Block	(%)
Block 1	8.11
Block 2	4.65
Block 3	2.17
Block 4	2.22
Block 5	2.17
Block 6	2.13
Block 7	2.22


Soil moisture at a grove with 2–5% organic matter with using 2–day irrigation interval

Field capacity at highest level is about 23%. Normal field capacity of FL soils is 8-14%. Organic matter makes the difference.

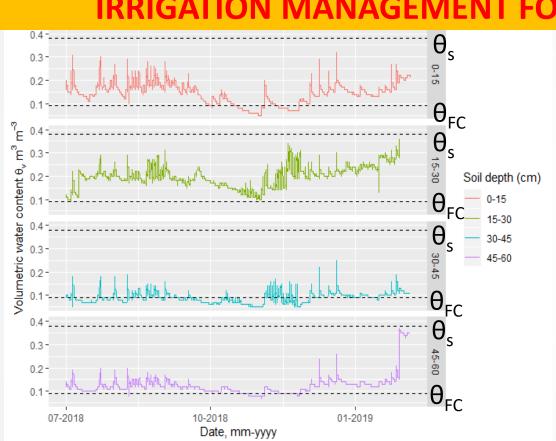
Soil moisture at a grove with 4–8% organic matter with daily irrigation

Field capacity at highest level is about 23%. Normal field capacity of FL soils is 8-14%. Organic matter makes the difference.

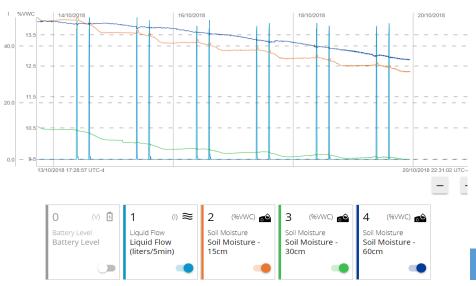
Benefits of soil amendments

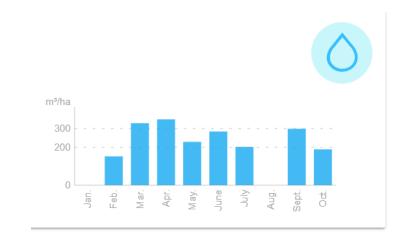
- Reduce compaction and helps water infiltration
- Reduces alkalinity of soil, thus moderating pH.
- Increase the organic matter content of soil
- Help balance the mineral content of the soil, helping with release of cations and anions.
- Buffer saline and toxic soil conditions
- Improve the physical structure of the soil, the way the soil particles are grouped together
- Lessen the amount of irrigation, by improving water storage.

- Provide more water and nutrients for timely plant recovery when faced with windy conditions, hail damage and damage caused by rapid temperature shifts.
- Organic amendments increase soil organic matter content and offer many benefits. Over time, organic matter improves soil aeration, water infiltration, and both water- and nutrientholding capacity.


SOIL MOISTURE MEASUREMENTS USING CAPACITANCE PROBES

Water monitoring at grove scale and soil moisture measurement at 6-, 12- and 24-inch soil depths

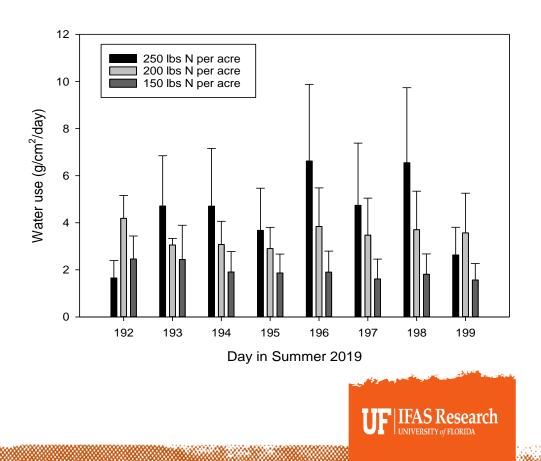



Soil moisture remained above field capacity at 0-6-inch, 6-24inch depth most of the time and close to field capacity at 12-18inch depth

IRRIGAT MENT FOR CITRUS

IRRIGATION MANAGEMENT FOR CITRUS TREES (2)

Water monitoring at grove scale and soil moisture distribution at 6, 12, and 24-inch soil depths



~217,238 gal/acre between Feb 2018 to October 2018

IMPROVED WATER USE EFFICIENCY WITH GOOD NITROGEN MANAGEMENT

Daily irrigation could help in managing HLB affected trees and reduce tree water stress with optimal fertilization.

Use of selected sensors for irrigation decisions on sandy soils

Field Health Report for 01/19/2020

operations@aquaspy.com

To Kadyampakeni, Davie M

Retention Policy Inbox UF (3 years)

Expires 1/18/2023

S Reply

≪ Reply All

i If there are problems with how this message is displayed, click here to view it in a web browser.

habb houges					nass neages		
Subscriber	Site	Plant Date	Crop Type	Moisture	Last Irrigation	Days Until Empty	Root Depth
University of Florida	<u>(14704) U. of</u> <u>Florida Block 22</u> <u>Row 14 Citrus 2020</u>	01/01/2020	Citrus	Optimum 55.2 %	01/04/2020 12"	17.9	48"
University of Florida	(14706) U. of Florida Block 22 Row 15 Citrus 2020	01/01/2020	Citrus	Above Optimum 63.8 %	01/04/2020 16"	21+	48"
University of Florida	(14707) U. of Florida Block 22 row 16 Citrus 2020	01/01/2020	Citrus	Optimum 42.6 %	01/04/2020 24"	21+	48"
University of Florida	(14708) U. of Florida Block 22 row 18 Citrus 2020	01/01/2020	Citrus	Optimum 44.7 %	01/04/2020 12"	16.2	48"
University of Florida	(14709) U. of Florida Block 22 row 20 Citrus 2020	01/01/2020	Citrus	Optimum 60.0 %	01/04/2020 12"	21+	48"

Soil moisture, soil temperature and electrical conductivity data

Green zone is for adequate soil moisture in the root zone; black line is for average soil moisture, blue line is for optimal water content in the profile.

Irrigation monitoring along with soil parameter data collection

Irrigation events monitored with sensors.

Soil moisture data monitored from 4 to 48 inches. Red line is for field capacity.

Summary Moisture EC Temp° Weather Template °F 45.00 ~ 4" \checkmark 8" 40.00 ~ \checkmark 16" 35.00 ~ 20" ~ 24" ----30.00 Moisture Value ~ 28" \checkmark 32" ---25.00 \checkmark \checkmark 40" 20.00 ---~ 44" \checkmark 15.00 48" ✓Toggle All 10.00 Data 11/01 12/23 02/13 04/06 05/28 07/19 09/09 10/31 12/22 **Reset Graph** Show: Irrigations Spread 0 Export Data

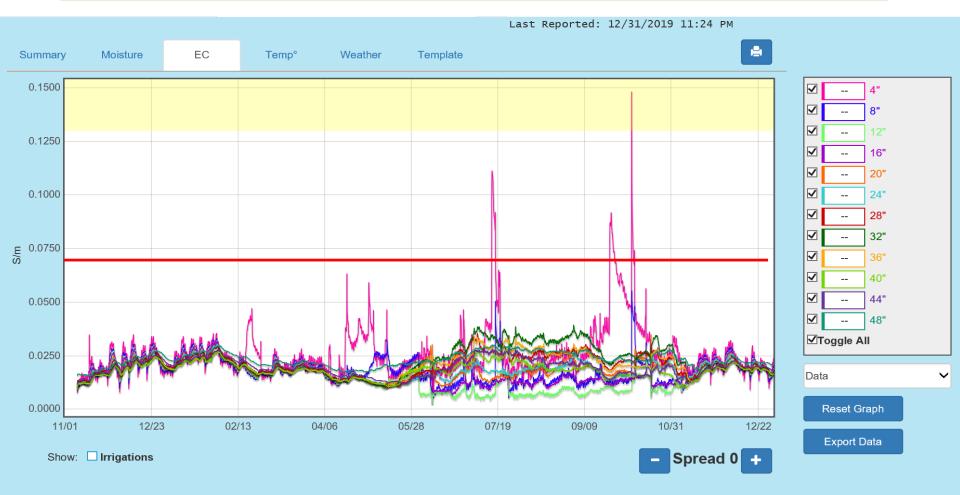
Last Reported: 12/31/2019 11:24 PM

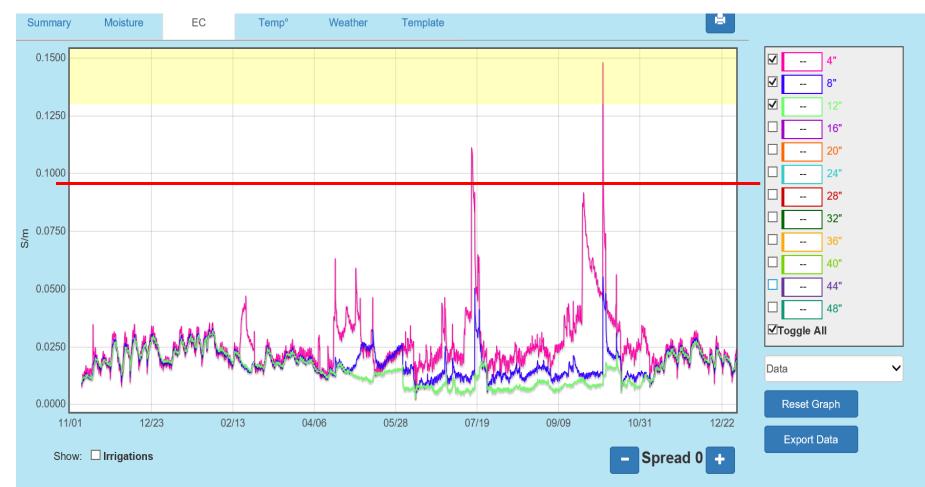
T UNIVERSITI OJ FLORIDA

Soil moisture data monitored at 4, 12, 20, 44 and 48 inches. Red line is for field capacity.

IFAS Extension

Soil temperature data tracked from 4 to 48 inches Last Reported: 12/31/2019 11:24 PM




Soil temperature data 4, 8, 12, and 48 inches.

Soil electrical conductivity (EC) data monitored from 4 to 48 inches. Red line is for maximum EC to be observed for the sensor of interest.

Soil electrical conductivity data at 4, 8, and 12inch depths. Red line is for maximum EC to be observed for the sensor of interest.

- Use of cover crops and compost would improve tree performance at different frequent irrigation rates on Florida sandy soils.
- Improved irrigation management achieved with the aid of soil moisture sensors of different types.
- Monitoring of nutrient movement also possible with use of sensors that track salinity.

Acknowledgements to USDA MAC CRDF Cover Crop Project for Funding and my program team

Contacts: dkadyampakeni@ufl.edu; Facebook: CREC Water and Nutrient Management Lab

QUESTIONS/COMMENTS?

E-mail: <u>dkadyampakeni@ufl.edu</u> Tel. 863-956-8843 Facebook and Twitter: Water and Nutrient Management Lab @ CREC

