

Definition of a "Hormone"

• Naturally occurring, organic substances that exert profound influences on physiological processes at very low concentrations

- From the Greek "ho. an = "to set in motion"

- How a hormone is identified:

1. Remove → the process does not occur

2. Re-apply → the process occurs

3. Works in isolated systems

4. Other natural compounds don't cause similar effects (e.g., nutrients)

1

In Animals

• Hormones were originally described in animal systems

• In animals, most hormones are produced in one part of the body and then insported to other body parts where they cause a response

3

In Plants
Each hormone causes responses in many plant parts, but the specific response depends on:
Plant species and plant part
The plant's or tissue's velopmental stage, which influences sensitivity to the hormone
Hormone concentration
Interaction with other hormones
Various environmental factors

5 6

Additional Hormones?

Brassinosteroids – promote stem elongation and cell division

Jasmonic acid
Befense against herbivores and pathogens

Salicylic acid
Systemin – wound response
Polyamines – stress tolerance

9

11 12

13 14

Available data on the natural levels of the various hormones in fruits point out:

• the diversity among species
• the large changes that occur during development and senescence
• the lack of close pelations between the levels of extractable hormones and the stage of development

> Something other than changes in hormone concentrations must be involved

16

15

17 18

Many signals are transduced by protein kinase cascades that regulate gene expression.

Buchanan et al. 2000.
Blochemistry and Molecular Biology of Plants. ASPP Press.

19 20

Explosion, fire destroy banana ripening facility

And the Market In Inc.

The Packer July 12, 1999

First

21 22

23 24

Class	Range at 20°C (ul C ₂ H ₄ /kg-hr)	Commodities	
Very Low	0.01 - 0.1	Cherry, citrus, grape, strawberry, pomegranate, leafy vegetables, root vegetables, potatoes, cut flowers	
Low	0.1 - 1.0	Blueb rry, cucumber, okra, peppers, per raor, pineapple, raspberry	
Moderate	1.0 - 10	Banana, fig. honeydew melons, mango, tomato	
High	10 - 100	Apple, apricot, avocado, cantaloupe, feijoa, kiwifruit, nectarine, papaya, peach, pear, plum	
Very High	>100	Cherimoya, passion fruit, sapote, mammee apple	
			₱FLC

25 26

Ethylene Effects – the "Triple Response" of Seedlings

1. Inhibition of elongation growth in dark-grown seedlings

2. Promotion of radial growth swelling of the stem)

3. Mediates tight closure of the apical hook

27 28

29 30

FLORID

33 34

Ethylene Biosynthesis Regulation - ACO · ACC Oxidase is usually present in excess and rapidly converts ACC to ethylene ACO activity (like ACS) also increases during climacteric fruit rip ng ACO activity is inhibited by low O2 and high temperaturé (>35C) ACO activity is dependent on presence of low levels of CO₂ FLORID

35 36

Ethylene Action
 In other words, ethylene responses are always ready to go, being held back by the receptors (negative regulators)
 Ethylene binding to the receptors is like pulling a plug, allowing an almost instant reduced in the responses to proceed

37 38

39 40

Factors Affecting Ethylene
Production & Action

• Genotype (species and cultivar)

- avocado vs. apple vs. citrus vs. lettuce, etc.

- e.g., plum cultivars wir different ethylene production
& ripening rates

• Physiological age

- ethylene production and response of climacteric fruits depends on their physiological age

41 42

Factors Affecting Ethylene
Production & Action

• CO₂ level

- CO₃ competitively inhibits ethylene action, consequently, it can also inhibit autocatalytic ethylene production

- However, CO₂ injury can induce elevated ethylene production

• Exogenous ethylene

- ethylene exposure induces climacteric fruits to initiate autocatalytic ethylene production

- No effect on nonclimacteric ethylene production

43 44

Factors Affecting Ethylene
Production & Action

Other hydrocarbons
- propylene, carbon monoxide, acetylene, etc. can enhance ethylene production by fruits because they mimic ethylen
they mimic ethylene production, irradiation, etc. are all stresses that stimulate ethylene production

Effect of impacts (drops) on respiration and ethylene production of tomatoes damaged at the mature-green stage and held at 20°C

45 46

Factors Affecting Ethylene
Production & Action

• Growth regulators

- may reduce or stimulate ethylene
production der poling on the growth
regulator

• Inhibitors

- biosynthesis inhibitors (AVG, AOA)

- action inhibitors (CO₂, Ag⁺, 1-MCP)