

Dr. Jeffrey K. Brecht

Horticultural Sciences Department, Gainesville

Dr. Mark A. Ritenour

Indian River Research and Education Center, Fort Pierce

1

I. Introduction

• Definition of "Fresh-cut Produce"

 Fruits or vegetables that have been trimmed, peeled, and/or cut into 100% usable product to offer consumers

high nutrition, convenience, and value while still maintaining it's freshness (IFPA, 1997)

I. Introduction

- Total sales of fresh-cut estimated at \$27 billion (2016 figures)
 - ~61% Packaged Salads
 - ~27% Vegetables
 - ables
 - ~12% Fruits
- About 22% of U.S. total produce sales (>\$122 billion)
- Most (~60%) sold through food service
 - Restaurants, caterers, hospitals, schools

3

I. Introduction

- Examples of Fresh-cut Vegetables
 - broccoli and cauliflower (florets and slaws)
 - cabbage (shreds and coleslaw)
 - carrots (shreds, sticks and baby peeled)
 - celery (chopped and sticks)
 - lettuce (shredded, chopped, halved, cored; salad mixes)
 - onions (slices, dices, and whole peeled)
 - peppers (chopped and rings)
 - spinach (washed and trimmed)
 - squash and zucchini (slices)

Δ

I. Introduction

- Examples of Fresh-cut Fruits
 - Fruit salads
 - Grapes (washed and de-stemmed)
 - Cantaloupes, honeydews, and watermelons (halves and cubes)
 - Pineapple (cored, slices and cubes)

- Apple, nectarine/peach, mango, and papaya slices

Intact vs. Fresh-cut

Intact

Fresh-cut

Wounding avoided

Wounding normal

Epidermal layer controls water and gas exchange and interior tissues exposed limits pathogen entry

Epidermal layer removed and

Onset of ripening avoided to Fresh-cut fruits must be ripe extend shelf life of climacteric fruits

and "ready-to-eat"

Chilling injury limits shelf life of subtropical & tropical crops

Wounding-induced senescence limits shelf-life

Wound Physiology

 The injuries to which fresh-cut produce items are subjected in their preparation, trigger shifts in the metabolism of the injured tissues that result in accelerated senescence, ripening, and deterioration.

Shorter shelf life

7

Wound Physiology

- Response depends on the extent or severity of wounding
 - Peeling, abrasion, slicing, chopping, and shredding:
 - Force applied
 - Implement sharpness
 - Unit size or wounded area

Also affected by temperature.

Sargent

Consequences of Wounding

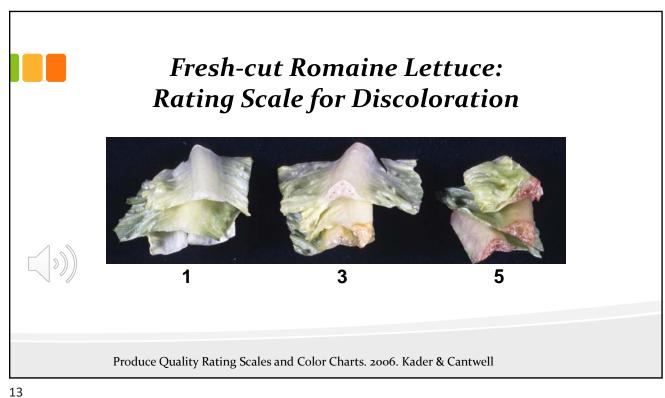
- Induction of ethylene synthesis.
 - Increased tissue sensitivity to ethylene.
 - Ethylene effects:
 - Phenolic synthesis (browning, bitter flavor).
 - Tissue softening/toughening.
 - Yellowing (chlorophyll degradation).
- Elevated respiration
 - Up to 200% ↑
 - Decreased respiratory quotient (CO₂:O₂)

9

Romaine lettuce wound respiration at 5 and 15 °C

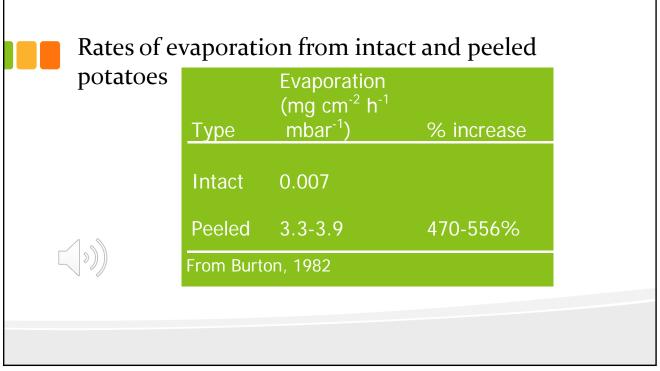
Temp. (°C)	Time (h)	CO ₂ prod. (ml kg ⁻¹ h ⁻¹)	O ₂ cons. (ml kg ⁻¹ h ⁻¹)	RQ
5	4	9.87	15.77	0.63
	8	8.44	8.01	1.05
	12	7.78	6.60	1.18
15	4	28.94	43.58	0.66
	8	28.90	36.68	0.79
	12	28.24	33.07	0.85
Brecht and Emond, unpublished				

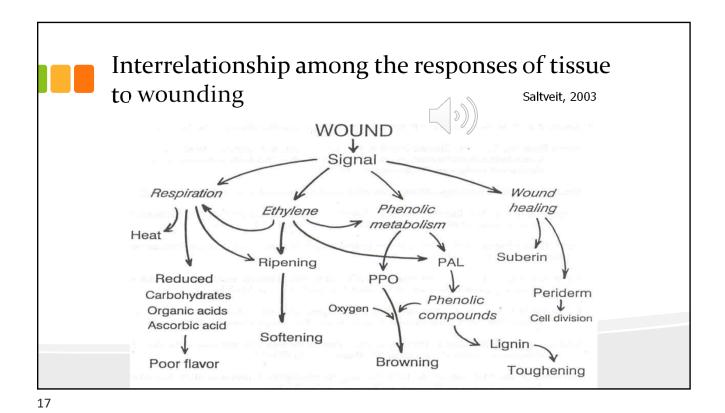
Consequences of Wounding


- Enhanced water loss
- Oxidative browning (PPO + phenolics)
- Membrane lipid degradation
 - Increased membrane permeability & ion leakage → water soaked tissues
- Aroma volatile production
 - "Normal" vs. wound-induced aroma volatiles (e.g., cucumber, onion, tomato)
 - Loss of aroma during storage

11

Fresh-cut Broccoli Browning Rating Scale




Produce Quality Rating Scales and Color Charts. 2006. Kader & Cantwell

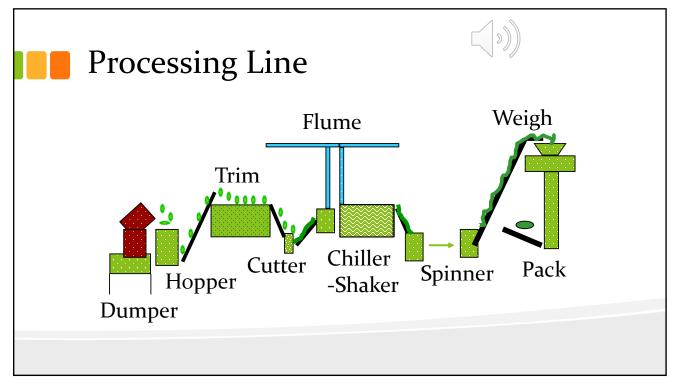
Brown Stain Rating Scale for Salad-cut Lettuce Produce Quality Rating Scales and Color Charts. 2006. Kader & Cantwell

Fresh-cut Preparation Steps

- Produce is harvested from the field and put into large bins for the processor
- 2. *This bulk produce is emptied onto a trimand-core processing line to remove unusable parts such as the outer leaves, stems and peelings

*The trimmed produce then goes through a cutting machine

^{*}Refrigerated operation


Fresh-cut Preparation Steps

- * An inspection is done to make sure all produce is uniform
- 2. * The cut produce is then vigorously washed as many as three times with cold, sanitized (usually chlorinated) water
- 3. * Finally, the washed produce is dried and put into special packaging designed to preserve its freshness (MAP)

*Refrigerated operation

19

Special Treatments

- Anti-microbial compounds
 - Sorbate or benzoate
- Control of tissue softening (fruits)
 - Calcium salts (chloride, acetate, lactate)
- Control of browning
 - Acidification (citric acid), antioxidants (Ca ascorbate, Ca erythorbate)

Temperature Control

- To insure maximum shelf life
- Maintain quality
- Prevent/reduce microbial growth
- Allow modified atmosphere packaging to perform well

27

Temperature Control - Steps

- Bulk produce precool as usual
- Processing facilities 2-7°C
- During processing chilled (o°C) water
 - Immersion
 - Shower
- Packaging/storage o to 5°C

Packaging

- Isolate the product (sanitary)
- Reduce water loss (wilting)
- Modify the atmosphere
- Promote sales (attractive appearance)

29

Monitoring and Control Measures

- Temperature control
- Water sanitation
- Microbiological testing
 - Processing equipment
 - Packaged produce samples

Microbiology

- Spoilage organisms
 - Fresh-cuts are more susceptible to inoculation and decay than intact produce
 - Spoilage organisms are harmless to humans
- Human pathogens and parasites
 - Bacteria, viruses, and parasites
 - Pathogens can grow (proliferate) on fresh-cuts

31

Spoilage Organisms

- Fungi & lactic acid bacteria on fruit.
- Bacteria on vegetables.
- Cut surfaces make nutrients readily available with no energy expenditure.

Human Pathogenic Organisms

- Escherichia coli
- Salmonella spp.
- Shigella spp.
- Vibrio cholerae
- Bacillus cereus
- Clostridium botulinum
- Listeria monocytogenes

- Cryptosporidium parvum
- Giardia lamblia
- Cyclospora cayetanensis
- Toxiplasma gondii
- Norwalk and hepatitis A viruses

33

Factors Affecting Microbes

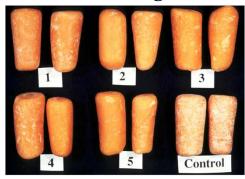
- Temperature control and relative humidity
- Chemical treatments (sanitizers & antimicrobials)
- Modified atmosphere packaging (esp. high CO₂)
- Natural plant antimicrobial compounds
 - Hexanal, methyl jasmonate, various aldehydes & glucosinolates
 - Essential oils like thymol, from thyme (the seasoning)

Temperature & RH

- Low temperatures slow microbial growth
 - Relationship to marketing.
- High RH, per se, doesn't promote microbial growth as much as free, liquid water
 - Centrifugation used during processing to remove surface water

35

Chemical Control of Microbes

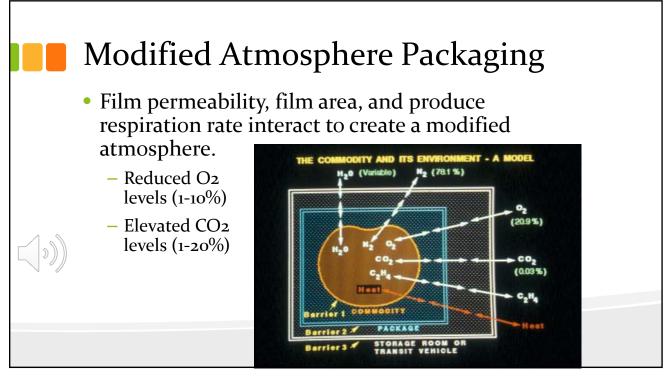

- Sanitizers (chlorine, etc.)
 - Maintain water microbiological quality rather than disinfect produce
 - No residual effects

- Anti-microbial compounds
 - Sorbate or benzoate remain on produce or in coatings

Edible Coatings on Carrots

- Hygroscopic materials to maintain moist surface appearance
- Sometimes also used to create an internal modified atmosphere

37


Sanitizing Compounds

- Water sanitizers
 - Chlorine (hypochlorous acid & chlorine dioxide)
 - Peroxyacetic acid (Tsunami™)

- Hydrogen peroxide
- Ozone
- Equipment & facility sanitizers
 - Bromine, iodine, trisodium phosphate (TSP), quaternary ammonia

Packaging Application

- Select film based on:
 - Cost
 - Appearance (clarity)
 - Sealing properties & strength
 - Printing quality
 - Gas permeability (varies 300-fold)
 - CO₂/O₂ permeability ratio (o.8 to 8)

41

Modified Atmosphere Effects

- Reduced O₂ & elevated CO₂ slow respiration and inhibit ethylene synthesis and action, respectively
- Reduced O₂ also inhibits oxidative browning reactions
- Elevated CO₂ also retards microbial growth

Microbial Competition

- Treatments that suppress one group of organisms may allow other groups to flourish.
 - e.g., L. monocytogenes grew faster after epiphytic bacteria populations were reduced by MAP or H2O2 treatments.

43

Recommended Conditions

- Prepare fresh-cut products at refrigerated temperature (2-7°C)
- Minimize wounding in preparation

- Use sharp blades or water knives
- Use good equipment and employee sanitation practices
- All hydrohandling steps require cold (o°C), sanitized water

Recommended Conditions

- Use appropriate chemical treatments to control:
 - Microbes
 - Browning
 - Texture changes
- Package product in MAP
- Handle final product at o-5°C
- Expected shelf life still only 7-10 days