

I. Introduction
More perishable than root or fruit vegetables
Major causes of deterioration
Water loss
Yellowing (chlorophyll loss)
Mechanical injury (& decay)
Physiological disorders
Growth & toughening (asparagus, celery)

3

5 6

II. Morphological Characteristics • In relation to water loss - Stem vegetables • High surface:volume ratio (3 to 6:1) · Cut ends contribute to water loss · Susceptible to water loss Floral vegetables Unopened flower buds borne on stems (50-60% by weight) Relative susceptibility to water loss is similar to stem vegetables

11 12

Percentage Loss of Original Weight From Various **Commodities During Storage** Initial rate of water Percentage loss during successive 2-week periods loss (% day-1 mbar-1 Commodity wvpd) 2 3 Cabbage 7.06 3.85 4.80 0.5 4.55 Sweetpotato
Beet (w/ leaves)
Cauliflower 0.6 8.57 5.10 5.67 5.05 0.9 12.86 10.19 10.51 9.25 8.14 8.51 1.2 17.02 9.07 Storage temperatures o-2°C; RH 85-87.5% (Singh et al. 1952)

13 14

II. Morphological Characteristics

• In relation to texture

- Collenchyma and sclerenchyma tissues make celery fibrous or stringy

- Toughness of asparagus is related to lignification

- Turgidity of these vegetables is important to their tenderness

- Solidity (firmness) of buds increases with maturation

15 16

III. Compositional Characteristics
Contain chlorophyll
High in water content, succulent, tender, non-acid
Many vegetables of this group are high in ascorbic acid (Vitamin C) content
Carotenoids - antioxidants
Also high in Vitamin A
Very good sources of minerals (P, K, Fe, Na, Ca)

Leafy & Floral Vegetables High in Vitamins C and A Vitamin C (mg/100 g fr. wt.) Vitamin A (IU) Parsley (172) Kale (8,900) Turnip greens (139) Parsley (8,500) Broccoli (113) Spinach (8,100) Brussels sprouts (102) Turnip greens (7,600) Collards (92) Chard (6,500) Cauliflower (78) Broccoli (2,500) Cabbage (47) Asparagus (48)

17 18

and Shelf-life				
Solidity class	Postharvest considerations More susceptible to physical damage, higher			
ı)Soft-to-				
2) Fairly firm	respiration rate			
3) Firm	Maximum storage-life			
4) Hard-to-	More susceptible to russet spotting, pink rib, and			
5) Extra-hard	other physiological disorder	other physiological disorders; decreased storage-life		

IV. Maturity & Quality Indices

• Quality criteria for some commodities

- Asparagus: straightness, diameter, percent green color, no defects

- Cabbage: solidity, no seedstems, color, no defects

- Cauliflower: cleanness, compactness, white color, size, no defects.

- Celery: stalk form, compactness, color, no seedstems, no defects

- Lettuce (head): color, maturity (solidity), no seedstems, freedom from defects and decay

- Freshness and turgidity are quality factors for all

21 22

Class	(mg CO2/kg-hr) at 15°C	Commodities
Very Low	< 10	Dates, dried fruits and vegetables, nuts
Low	10 - 20	Apple, beet, celery, citrus fruits, cranberry, garlic, grape, honeydew melon, kiwifruit, onion, papaya, persimmon, pineapple, potato (mature), sweet- potato, watermelon
Moderate	20 - 40	Apricot, banana, blueberry, cabbage, cantaloupe, carrot (topped), celeriac, cherry, cucumber, fig, gooseberry, lettuce (head), mango, nectarine, olive, peach, pear, plum, potato (immature), radish (topped), summer squash, tomato
High	40 - 80	Avocado, blackberry, carrot (with tops), cauliflower, leeks, lettuce (leaf), lima bean, radish (with tops), raspberry
Very High	80 - 160	Artichoke, bean sprouts, cherimoya, cut flowers, endive, green onions, kale, okra, passion fruit, snap bean, watercree
Extremely High	> 160	Asparagus, broccoli, Brussels sprouts mushroom, parsley, peas, spinach, sweetcorn

23 24

26

V. Postharvest Physiology

Responses to controlled atmospheres

Cabbage can be held for up to 6 months in CA at o°C (2-3% O₂ + 5-8% CO₂); this is used commercially in the northeastern U.S.

CA is also used commercially during marine transportation of lettuce (1-2% O₂ + 51% CO₂)

Carbon monoxide (2-3% CO) has been used as a discoloration inhibitor on lettuce in marine transportation

CA prevents color and chlorophyll degradation in broccoli

CA reduces stalk elongation and slight pithiness and also prevents butt end cut browning in celery

27 28

egetables			
Vegetable type	O ₂ +	CO_2	70)
Asparagus	13-16	5-7	
Broccoli	1-2	10	
Brussels sprouts	1-2	5	
Cabbage [*]	2-3	5-8	
Cauliflower	2	<5	
Celery	2-4	3-5	
Lettuce	2-3	0-1	

29 30

VI. Pathological Breakdown

Bacterial soft rot: chard, celery, lettuce, spinach
Gray mold rot (Botrytis): artichoke, celery, lettuce, rhubarb
Watery soft rot: celery, lettuce, cabbage
Downy mildew: lettuce, spinach
Big vein: lettuce
Rhizoctonia: cabbage

33 34

35 36

VII. Postharvest Handling Procedures

• Temporary storage

• Transport

• Destination handling

• Retail handling

Images courtesy of Trevor Sadoo

40

39

VIII. Recommended Conditions
 Duration of holding: long-term storage/transport (>1-2 weeks) is not typical, except with cabbage, Chinese cabbage, and celery
 Air movement: minimum required for proper temperature control
 Avoid exposure to ethylene throughout the handling system
 Atmospheric composition: see section on responses to controlled atmospheres – air exchange sufficient to maintain adequate O₂ and avoid injurious CO₂ levels

41 42