

Dr. Mark A. Ritenour

Indian River Research and Education Center, Fort Pierce

Dr. Jeffrey K. Brecht

Horticultural Sciences Department, Gainesville

FLORIDA IFAS

1

Processes Associated with Fruit Ripening

- Seed maturation
 - ability of seeds to germinate successfully
- Development of wax on skin
- Abscission of fruit

Source: Curry, 2000 http://postharvest.tfrec.wsu.edu/pgDisplay.p hp?article=PC2000AA#s2

Processes Associated with Fruit Ripening

- Change in C₂H₄ production (climacteric fruits only)
 - increase in endogenous ethylene concentration until adequate to initiate ripening
 - autocatalytic ethylene production
- Increased sensitivity to C₂H₄ (climacteric fruits only)

3

Processes Associated with Fruit Ripening

- Change in respiration rate
 - increased O₂ consumption and CO₂ production in climacteric fruits
- Membrane and cell wall changes
 - increased membrane permeability → juice leakage
 - depolymerization of pectins and other cell wall polysaccharides → softening

- Protein and nucleic acid changes
 - synthesis of enzymes involved in compositional changes
- Compositional changes
 - starch to sugar conversion; loss of acids
 - pigment synthesis (anthocyanins & carotenoids) and degradation (chlorophyll)
 - polymerization of tannins and resulting loss of astringency
 - formation of flavor volatiles

Factors Influencing Climacteric Fruit Ripening

 Factors that affect C₂H₄ production and action can all be manipulated to control ripening

Factors Influencing Climacteric Fruit Ripening

- Ethylene treatment
 - promotes faster and more uniform ripening by coordinating the onset of ripening
 - reduced time
 between harvest
 and consumption
 can mean better
 quality and
 nutritive value

7

Ethylene Effects on Fruit Ripening as Indicated by Flesh Firmness of Stone Fruits

Days at			Flesh Firmness (kg)		
20°C	Treatment	<u>Nectarine</u>	_Peach	<u>Plum</u>	
0	At harvest	5.3 ± 1.0	6.9 ± 0.7	2.8 ± 0.9	
4	Without added ethylene	1.0 ± 0.5	1.3 ± 0.5	1.7 ± 1.0	
4	With 20 ppm				13
	ethylene	o.8 ± o.2	1.0 ± 0.3	o.8 ± o.5	UNIVERSITY OF FLORIDA IFAS

Effect of Temperature on Ripening Rate of Stone Fruits Exposed to 100 ppm Ethylene for 48 Hours

		Mean Number o	nber of Days to Ripen		
Temperature <u>(°C)</u>	Nectarine	Peach	<u>Plum</u>	<u>Mean</u>	
15	6.9	5.6	5.6	6	
20	4.3	3.8	3.7	4	
25	3.2	2.7	2.7	3	

9

Undesirable Ethylene Effects

- Undesired ripening and softening of fruits in storage
- Accelerated senescence and loss of green color in leafy and immature fruit vegetables (e.g., cucumbers)
- Abscission of leaves (*e.g.*, cauliflower, cabbage, foliage plants, etc.)
- Sprouting (stimulation or retardation)

Undesirable Ethylene Effects (cont.)

- Induction of phenolic synthesis
 - -bitter principle (isocoumarin) in carrot roots
 - toxic ipomeamarone in sweetpotato roots
 - -russet spotting on lettuce
 - lignification of asparagus

11

 Physiological disorders of ornamental crops

- -'sleepiness' of carnations (failure of bloom to open)
- -flower and leaf abscission

https://postharvest.ucdavis.edu/produce-factssheets/carnation-miniature-carnation

inhibition of shoot and root elongation; gummosis; bud necrosis and flower bud blasting in bulb crops

13

Undesirable Ethylene Effects (cont.)

The ultimate undesirable ethylene effect!!

Explosion, fire destroy banana ripening facility

The Packer July 12, 1999

Postharvest Sources and Levels of Ethylene in Lettuce Handling

Sample locations		Ethylene concentration (ppm)		No. of samples analyzed	Potential sources
		Range Mean			
Field	A*	tracet-0.12	-	21	Air pollution.
Field to cooler	B*	0.03—0.11	0.07	3	Mechanically injured lettuc Exhaust from truck, other pollution
Holding areas prior to vacuum cooling	AB	0.01—0.61 0.01—0.80	0.05 0.16	47 12	Exhaust from trucks and forklifts
Immediately following cooling	В	0.01—0.29	0.12	11	(Vacuum cooling removes much of the C ₂ H ₄ inside cartons)
Cold storage rooms at vacuum coolers	A B	0.01—2.78 0.01—1.56	0.33 0.22	144 73	Exhaust from forklifts, other commodities
Inside rail cars at destination	A B	0.01—0.19 0.01—0.02	0.06 0.01	14	Decay, other pollution sources
Inside truck units at destination	AB	0.04—0.22 0.08—0.11	0.08	9 4	Decay, other pollution sources
Distribution centers and warehouses	A B	0.03—2.49 0.01—0.78	0.25 0.08	22 43	Exhaust, other commodities
Retail storage areas	AB	0.02—2.95 0.06—2.88	0.36 0.41	19 18	Other commodities
Home refrigerator	A	0.02-1.58	0.25	33	Other commodities

15

Fluctuation of Ethylene Levels Corresponding to Forklift Activity

Fig. 2. Fluctuations of ethylene concentration in a cold room used for holding lettuce after cooling, where propane-fueled forklifts were operated during a 3-day period.

- Methods of application
 - Cylinders of ethylene or banana gas (C₂H₄ in CO₂) with flowmeters

- Methods of application
 - -Ethylene generators (liquid ethanol plus catalyst => C₂H₄)

- Methods of application
 - Ethylene-releasing chemicals
 - *e.g.*, Ethephon = 2-chloroethane-phosphonic acid

Intended for field application, but sometimes used postharvest

19

Commercial Use of Ethylene (cont.)

- Ethylene concentration and duration of treatment
 - physiological responses are saturated at 100 ppm
 - mature climacteric fruit should initiate endogenous ethylene production within no more than 72 hours
 - degreening should continue for no more than 72 hours or risk increased peel senescence and decay

- Used for ripening of climacteric fruits
 - Bananas
 - -Tomatoes v
 - Very common use
 - Avocados
 - Mangoes
 - Papayas
 - Persimmons
 - Casaba & Honeydew melons

Not common

21

Commercial Use of Ethylene (cont.)

- Ripening climacteric fruits
- Recommended conditions (tomatoes)
 - -20 to 21°C
 - 90 to 95% RH
 - $-100 \text{ to } 150 \text{ ppm } C_2 H_4$
 - Air circulation = 20-40 ft³ per minute per ton of product
 - Ventilation = 1 air change per 6 hours or open room for 0.5 h twice per day (prevent CO₂ build-up)

- Degreening of citrus fruits
- Recommended conditions (Florida)
 - −28 to 29°C
 - 90 to 96% RH
 - -5 ppm C_2H_4
 - Air circulation = 10 ft³ per min. per box
 - Ventilation = 1 air change per hour or sufficient to maintain <0.2% CO,

- ETHYLENE

Grapefruit Degreening Room

27

Avoiding Exposure to Ethylene

- Exclusion of ethylene from storage rooms
 - use of electric forklifts
 - − C₂H₄ absorber on forklift exhaust
 - avoiding other pollution sources
 - avoiding mixing ethylene-producing and ethylenesensitive crops

- Removal of ethylene from storage rooms
 - use of adequate ventilation (air exchange)
 - use of ethylene absorbers
 - Potassium permanganate (alkaline KMnO₄ on inert pellets = "Ethylene Control," etc.)
 - Activated and brominated charcoal +/- KMnO₄ = "Stayfresh" absorbers
 - Palladium-impregnated zeolite (It's Fresh! the most effective)

Source: Ethylene Control, Inc.

29

Avoiding Exposure to Ethylene (cont.)

- Removal of ethylene from storage rooms
 - use of ozone or UV radiation to oxidize ethylene:
 - 1. $O_2 + UV \rightarrow O_3$
 - 2. $C_2H_4 + [O] \rightarrow CO_2 + H_2O$
 - ozone may also be produced by corona discharge
 - must remove excess O₃ to avoid injury to fruits & vegetables

- Removal of ethylene from storage rooms
 - use of low pressure system (*i.e.*, hypobaric CA storage)
 - 1/10 atm = 1/10 gas concentrations in storage atmosphere (e.g., 21% O_2 becomes 2.1% O_2)
 - low pressure also facilitates gas (i.e., C₂H₄) diffusion from fruit tissue

Avoiding Exposure to Ethylene (cont.)

- Removal of ethylene from storage rooms
 - oxidation of ethylene with platinum or oxide catalysts + heat (200-300°C)

- low temperature catalysis (e.g., TiO₂ + UV radiation

at ~100°C)

UNIVERSITY OF FLORIDA
IFAS

Source: KES Science & Technology. Inc.

Inhibiting Ethylene Biosynthesis & Action

- Biosynthesis inhibition
 - AVG (aminoethoxyvinylglycine)
 - inhibits ACS (i.e., SAM → ACC)
 - the commercial product is "ReTain"
- Action inhibition
 - 1-MCP (1-methylcyclopropene)
 - Irreversibly binds to ethylene receptors
 - "EthylBloc" for ornamentals and "SmartFresh" for fruits ("Harvista" for preharvest)

$$\begin{array}{c} CH_2 \\ \parallel \\ CH_2 \end{array} + \begin{array}{c} L_1 \\ \parallel \\ L_3 \end{array} + \begin{array}{c} CH_2 \\ \parallel \\ CH_2 \end{array} \begin{array}{c} L_1 \\ \parallel \\ CH_2 \end{array} \begin{array}{c} L_1 \\ \parallel \\ L_3 \end{array}$$

33

Table 1. Concentration of compound needed to protect plants against ethylene.

Compound	Plant	Concentration (nl.l-1)
2-5-NBD	Banana	55,000
trans-Cyclooctene	Banana	780
cis-Cyclooctene	Banana	512,000
DACP (dark)	Camation	700,000
DACP (light)	Camation	140
1-MCP	Banana	0.7
1-MCP	Carnation	0.5
1-MCP	Pea growth	40
3,3-DMCP	Banana	700

Table 2. Time required for the receptor to become free. Time is for 1/2 of the receptor to become free after being exposed to the compound. In the case of 3,3-DMCP and 1-MCP, time refers to time for bananas become sensitive after a single exposure to ethylene.

Compound	Plant	Time (Minutes)
Ethylene	Mung bean sprout	10
Ethylene	Tobacco leaf	10
Ethylene	Tomato leaf	2
2,5-NBD	Mung bean sprout	180
Trans-cyclooctene	Mung bean sprout	360
3,3-DMCP	Banana	25,200
I-MCP	Banana	43,200

UNIVERSITY OF FLORIDA

Source: Sisler & Serek, 1999, Bot. Bull. Acad. Sin. 40:1-7