

- Photosynthesis occurs in chloroplasts (chlorophyll) mostly in the green leaves
- Carbohydrates produced in leaves are translocates throughout the plant (phloem)
- Carbohydrates are oxidized at destination sites to release energy, CO₂ & water = RESPIRATION

- Sugar + O_2

3

- First Law of Thermodynamics:
 - Energy can not be created or destroyed
 - Thus, total energy at the beginning of a reaction must equal energy at the end

VOF LIDA

5

Use of Energy

- During carbohydrate oxidation (respiration), energy (ATP) & heat are produced
 - ATP molecules are intermediate energy molecules that are easily transported within a cell to sites of action
 - At sites of action, ATP is coupled to different processes to "power" them
 - Energy that is not captured as ATP (or other molecule),
 or is not completely used up in a biological process is
 lost as heat

Respiration & Heat

- Respiration creates about 35 ATP per glucose molecule Per mole, glucose yields 686 kcal total energy
 - 1 mole ATP = ~ 12 kcal
 - 12 kcal * 35 mole ATP = 420 kcal/mole (estimates from 360 to 432)
 - 686 kcal 420 kcal = 266 kcal/mole glucose lost as heat immediately
- If not removed, lost energy will raise the cell/tissue temperature
 - Heat pumps (refrigeration) move heat from one place to another (e.g., from inside to outside of the rooms)
 - Calculation of heat production: $mg CO_2/kg-hr \times 61 = kcal/MT/day$

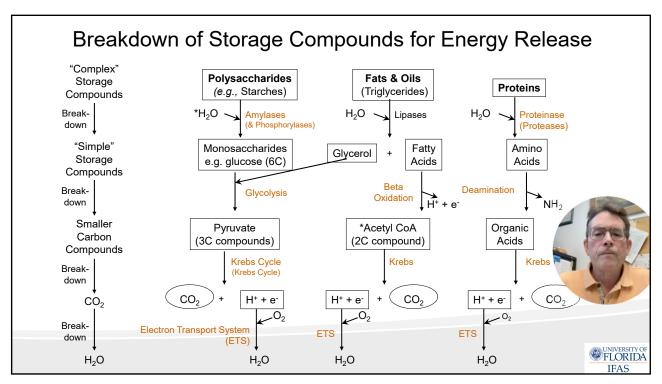
7

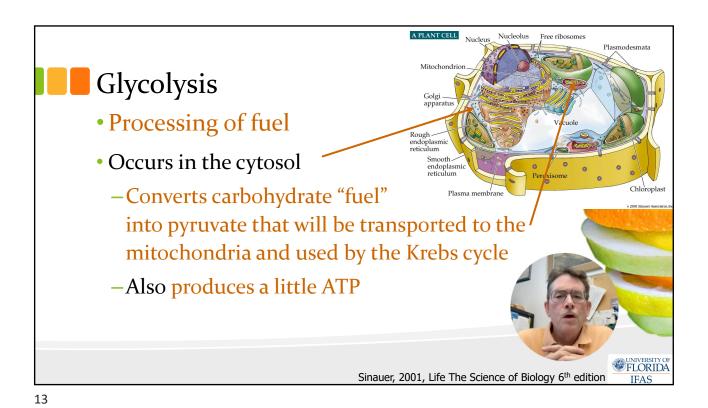
Second Law of Thermodynamics

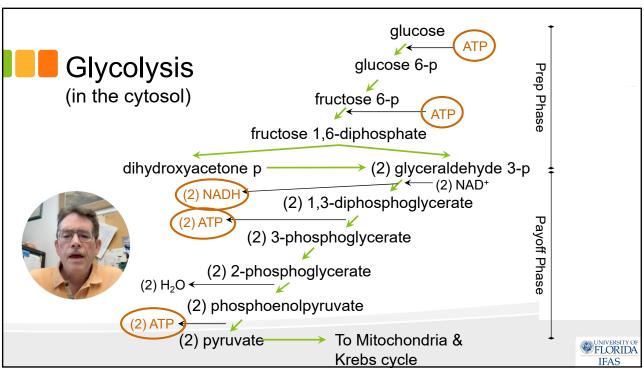
- Entropy (disorder) of a system will always increase with time
- Biological systems are very ordered (low entropy) and maintain their order by making their environment more disordered
 - Organisms expend energy to counteract the natural tendency to disorganize
 - Without a constant energy supply, organisms would disorganize and die
 - Living organisms are never at equilibrium

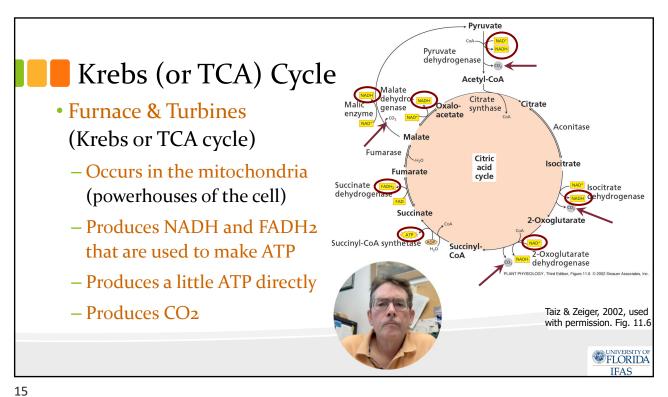

- When commodities are detached from the plant, they are severed from their food (energy) supply and must live on what they have stored
 - The less reserves they have stored, the shorter their postharvest life (immature vs. mature organs)

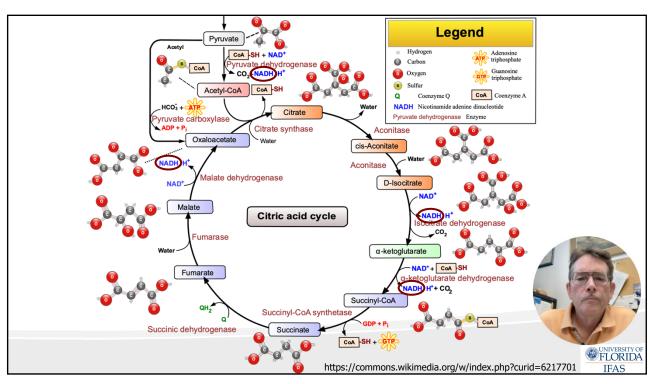
C


Respiration Overview


- Respiration is central to overall cell metabolism, such as synthesis of important compounds
- Respiration is composed of three parts:
 - *Glycolysis* located in the cytosol
 - *Krebs cycle* located in the mitochondria matrix
 - Electron Transport System (ETS) located on the inner mitochondria membrane

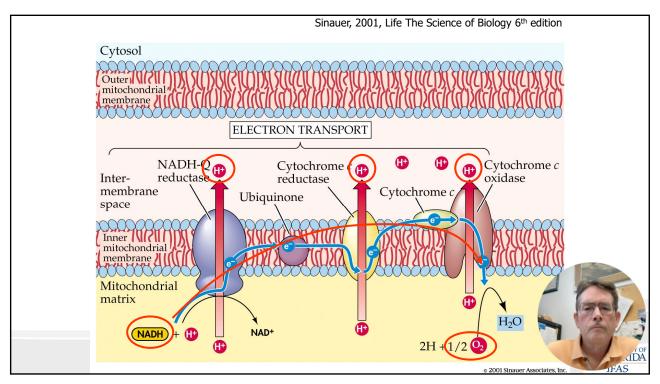


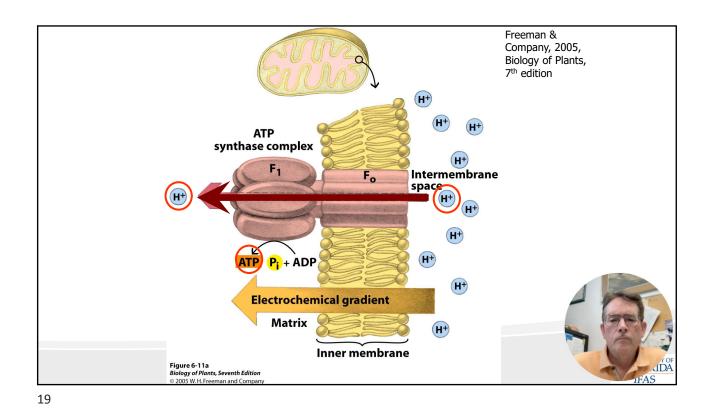

- Fuel sources:
 - Starch
 - Sugars (glucose, fructose)
 - Organic acids
 - Sometimes amino acids
 - Sometimes lipds (fats)



T

- Generator (ETS)[Electron Transport System]
 - ETS is located on the mitochondrion inner membrane
 - -Products from the Krebs cycle are used to make ATP
 - -Requires Oxygen (O₂)
 - In the process, electrons are ultimately passed to oxygen (final e⁻ acceptor)


Outer membrane
—— Inner membrane


Intermembrane

Crista

Freeman & Company, 2005, Biology of Plants, 7th edition

17

Net Production of ATP

Krebs Cycle (per pyruvate = 1 turn)

• Directly created

+1 ATP/pyruvate.

Total ATP from Krebs Sub-Phos/pyruvate = 1 ATP

Total ATP from Krebs Sub-Phos/glucose (2 cycles) = 2 ATP

Net Production of ATP

Krebs Cycle (per pyruvate = 1 turn)

After ETS

+5 NADH/pyruvate

x 2.5 ATP/NADH

+1 FADH₂/pyruvate

x 1.5 ATP/FADH₂

= 12.5 ATP

= 1.5 ATP

Total ATP from Krebs ETS/<u>pyruvate</u> = **14 ATP**Total ATP from Krebs ETS/<u>glucose</u> = **28 ATP**

21

Net Production of ATP

Krebs (TCA) Cycle (per glucose = 2 turns)

<u>1 Turn of Krebs</u>

2 Turns of Krebs

1 ATP Directly

2 ATP Directly

14 ATP from ETS

28 ATP from ETS

Total ATP from Krebs/glucose = **30 ATP**

Net Production of ATP

Grand Total from Respiration

Glycolysis = 5 ATP

Krebs Cycle (TCA) = 30 ATP

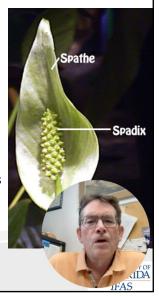
Grand Total = 35 ATP/glucose

23

Anaerobic Respiration

- Anaerobic respiration = without O,
 - Also called fermentation

• Without O₂, normal ETS cannot function, and the pathway backs up (at pyruvate)


- Glycolysis can still function
 - Pyruvate is shunted off to make
 Ethanol or Lactic Acid
- Only 2 ATP formed per glucose
 - Compared to 35 total in aerobic respiration (30 TCA + ETS)

- Many plant tissues have a cyanide resistant pathway (or alternative oxidase pathway)
 - Produces only ~ 1/3 the ATP of the normal pathway (complexes 3 & 4 are bypassed)
 - The loss in efficiency results in much greater heat production
 - In arum spadices, the cyanide resistant pathway increases tissue temperature up to 10C
- May serve as a stress mechanism to supply carbohydrate metabolites &/or minimize ROS (reactive oxygen species) production

Measuring Respiration

- Measure loss of substrates, or appearance of products
 - Loss of carbohydrates (dry weight)
 - Measure gas exchange
 - Loss of oxygen (O_2) Ambient concentration = $\sim 21\%$
 - Production of carbon dioxide (CO₂) Ambient concentration ~0.03% (& increasing)
 - Production of heat

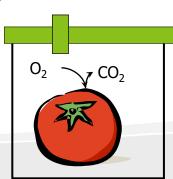
Dry Weight Loss

Respiration Rate $Rate of Dry Wt. Loss = \frac{(mg CO_2/kg-hr)}{1000 mg/g} \chi \frac{180}{264}$

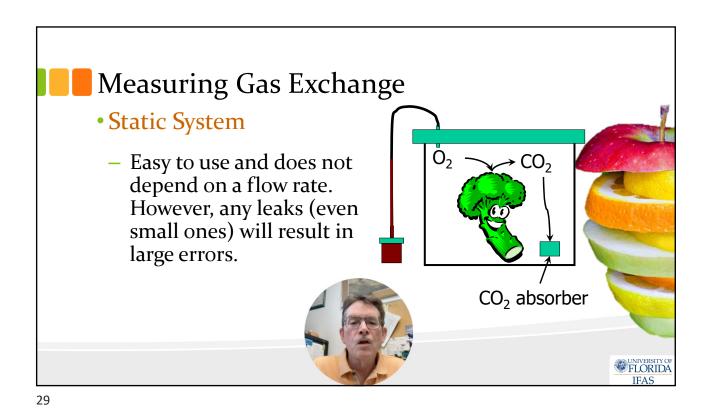
OR

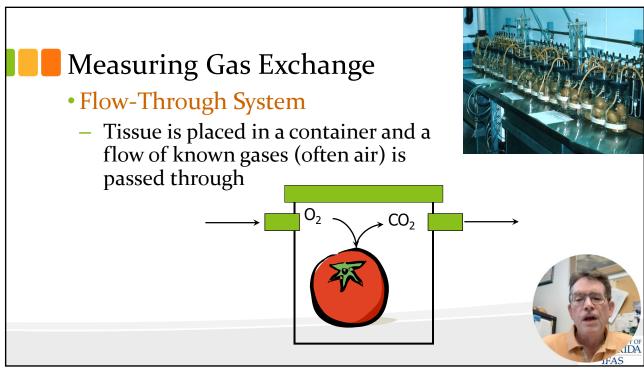
% of Dry Wt. Loss per hr. = $\frac{\text{Respiration Rate}}{\text{(mg CO}_2/\text{kg-hr)}} \times 68.2 \times 10^{-6}$

OR


mg CO_2 produced X 0.68 = mg sugar consumed

• e.g., onions held at 30° C (respiration = $35 \text{ mg CO}_2/\text{kg-hr}$) will lose 1.72% dry wt. per month (30 d)


27


Measuring Gas Exchange

- Static System
 - Tissue is placed in a sealed container and the loss of O₂ or increase of CO₂ are measured
 - Measure over brief periods so that CO₂ does not accumulate above 0.2% (can inhibit respiration)

- Flow-Through System
 - O₂ uptake and CO₂ production is calculated by measuring the concentration differences between the inlet and outlet & knowing the gas flow rate
 - Small leaks are not critical (due to positive pressure) and gas concentrations are not altered far from ambient
 - Convenient for repeated measures, but more involved to set up

Heat Production

- Newer, more sensitive & precise equipment now allows measuring respiration via this technique
 - $-1 \text{ mg CO}_2 = 2.55 \text{ cal heat production}$
 - $-1 \text{ mg CO}_2/\text{kg-hr} = 61.2 \text{ kcal/metric ton per day}$

= 220 BTU per ton of produce per day

1 ton refrigeration = 3023.9491 kcal/hr

