Mark Ritenour Indian River Research and Education Center, Fort Pierce Jeff Brecht Horticultural Sciences Department, Gainesville 1 #### Water Loss - Typically, 90 to 95% of a commodity is water - Besides resulting in direct loss of salable weight, it is also an <u>important source of quality loss</u> - Appearance quality wilting, shriveling, accelerated development of injuries - Textural quality loss of crispness, juiciness, etc. - Nutritional quality e.g. vitamins A & C - Thus, managing water content of commodities is critically important | % Water | | |---------|---| | Loss | Potential Effects | | 0.5 | Increased activity of some cell wall enzyme. | | 1 | Increased carbon dioxide & ethylene production. Faster ripening, yellowing & abscission. Reduce wound healing (periderm formation). | | 2 | Reduced turgor. Increased ABA content, reduced susceptibility to chilling injury. Accelerated loss of volatiles. | | 3 | Reduced severity of certain physiological disorders. Loss of membrane integrity. | | 4 | Faster loss of vitamins A & C. Loss of flavor. Discoloration of mechanical injuries. | | 5 | Loss of color intensity & gloss. Accentuation of pitting associated with chilling injury. Wilting & shriveling. | | 6 | Loss of textural quality, e.g., softening, limpness, flaccidity, & loss of crispness & juiciness. | # Percent water loss that results in unmarketability Commodity % Wt. Loss Asparagus 8 Brussels sprouts 8 Cabbage 7 Celery 5 Lettuce 3 Spinach 3 Δ - Physical Effects - Economic Effects - Physiological Effects #### Effects of Water Loss - Physical Effects - -Reduced turgor pressure from as little as 2% water loss => - Wilting & flaccidity of vegetables - Shriveling and wrinkling of fruit - Shrinking produce within a package allows it to move/ vibrate during transport - = damage - Economic Effects - Commodities are often sold on a weight basis - Less weight = lower price - Reduced quality/grade of a commodity reduces its value #### Effects of Water Loss - Physiological Effects (% water loss) - Detrimental - Increased respiration & ethylene production (1%) - Reduced periderm formation in some roots and tubers (1%) - Faster ripening, yellowing & senescence (1%) - Accelerated reduction in volatiles (2%) - Faster loss of vitamins A & C (4%) - Stem end rind breakdown (unknown %) Water - The Molecule • Polar molecule • O atom - partially negative • 2H atoms - partially positive • Overall - neutral molecule • Water's polarity is responsible for many of its unique properties • Water has one of the highest Dielectric Constants (a measure of a molecule's polarity) http://xnet.rrc.mb.ca/rcharney/The%20 water%20molecule_files/molecul2.jpg http://www.mse.cornell.edu/courses/engri111/images/hydrogn.gif #### Hydrogen Bonding - Polarity gives rise to Hydrogen Bonds - H-bonding = the weak electrostatic attraction between partially (+) charged "H" and partially (-) charged "O" - Besides water, H-bonds can also form between other molecules with other electronegative atoms (O or N) 11 #### Properties of Water - High Specific Heat (S.H.) (1 kcal/kg/°C). - Lots of energy required to raise the temperature of water 1 °C - High Thermal Conductivity (T.C.) (5.2 kcal/kg/h/°C) - Water rapidly conducts heat away from the point of application - Disperses heat quickly (the reason for the effectiveness of hydrocooling) - High heat of vaporization (540 kcal/kg) - Water that evaporates (transpiration) absorbs a great deal of heat => cools the plant tissue - High heat of fusion (8o kcal/kg) - When water goes from a liquid to a solid, it releases heat energy. Principal behind freeze protection - From solid to liquid, water absorbs energy. Added benefit for top-icing - Humidity Ratio (HR): - Also called the mixing ratio, specific humidity, or absolute humidity - Shows the moisture content of the air (= water content mass of water per mass of air) - Water vapor is often only = 0.4 to 1.5% of the weight of air - Vapor pressure: - Directly proportional to humidity ratio - Shows the partial pressure of water vapor in the air - Relative humidity (RH): - Corresponds to the ratio of actual water content of the air to the maximum water content at a given temperature $$RH = \underline{VP} \quad \underline{x \ 100}$$ $$\overline{SVP}$$ - RH = Relative humidity - VP = Vapor pressure - SVP = Saturated vapor pressure (100% relative humidity) ## Liquid – Gas Equilibrium Key concepts Maximum air water content (vapor pressure or humidity ratio) increases rapidly with increasing temperature Warm air can hold more water than cold air 29 # Liquid – Gas Equilibrium Key concepts Kays, 1997 - When warm, moist air is cooled, RH increases until it reaches its dew point - Air cooled below its dew point begins to lose water as condensation RELATIVE HUMIDITY % 100 80 60 50 40 30 20 100 0.024 TEMPERATURE C 100 0.020 15 0.020 15 0.020 15 0.020 16 0.020 17 0.020 18 0.020 18 0.020 19 0.020 10 0. Kays, 1997 Key concepts - Placing a cold commodity in a warm room with moist air, cools the air that contacts the commodity to below the dew point - Condensation will form on the commodity surface (AKA "sweating") Kays, 1997 31 ### Liquid – Gas Equilibrium Key concepts - Placing a warm commodity in room with cold, moist air will warm the air contacting the commodity - The RH will drop as the air warms because warmer air can hold more water - Increased water loss until the commodity is cooled - Delayed cooling results in greater water loss FLORID IFAS #### **Water Loss** - The rate of water diffusion between two points is related to the concentration gradient - Greater concentration (or vapor pressure) difference = faster diffusion rate (stronger driving force) - VPD (vapor pressure difference) is the driving force of water movement - The vertical bars represent VPD between 80% and 100% RH at 0°C & 40°C 33 #### Water Loss - $VPD = SVP_{tissue} VP_{air}$ - SVP_{tissue} = Saturation vapor pressure of the air at a given temperature - Air within a commodity is nearly saturated (no less than 95%, usually estimated at 100%) - VP_{air} = Vapor pressure of the air at a given temperature, pressure & RH - Calculating RH, dew-point, vapor pressure (humidity ratio) based on wet-bulb & dry-bulb measurements - How do these change when air is warmed and cooled. When does air loose water or dry commodities out? - What happens when air moves over refrigeration coils? - Boundary air layer effects of wraps, packaging, and air speed #### Factors Affecting Water Loss - Commodity factors - -Surface to volume ratio - Routes of water loss - Epidermal cells vs. periderm & other cells - Structure of the surface - -Cuticular waxes Stomates - -Trichomes Lenticels - Surface imperfections -Architecture #### Factors Affecting Water Loss - Environmental factors - Humidity - Lower humidity => greater VPD => greater water loss - Diffusion shells and air velocity - Outside the epidermis, there is a thin layer of air that maintains high humidity ("diffusion shell"). Surface features (e.g. hairs) strongly influence the thickness of this shell - Faster air flow => decreases thickness of the diffusion shell => increases water loss FLORIDA IFAS 41 #### Factors Affecting Water Loss - Environmental factors (continued) - Temperature - Higher temperatures => generally greater VPD => greater water loss - Atmospheric pressure - Lower pressures (high altitudes) increases water loss Reducing Water Loss Commodity Treatment Addition of water to some commodities (incl. cut flowers, potted plants) 43 Reducing Water Loss **Commodity Treatment** - Careful handling - Injury and punctured surfaces greatly increase water loss - Proper temperature,RH, packaging, etc. UNIVERSITY OF FLORIDATE AS Forced-air Cooling Commodity Treatment Rapid cooling & keeping cold 45 # Reducing Water Loss Commodity Treatment Waxing and other surface coatings 47 #### Reducing Water Loss Commodity Treatment • Use of plastic films (wraps) that act as moisture barriers #### Reducing Water Loss Manipulating the Environment cartons can absorb water - Maintaining temperature of refrigeration coils within 1°C of the air temperature - Larger evaporator coils - Minimizing air movement around the commodity & reducing room air exchanges - Addition of moisture to the air (humidifiers) Manipulating the Environment - Moisture barriers, e.g. - In the walls of storage rooms and transport vehicles - Polyethylene liners or curtains within shipping containers - Wet the floor in storage rooms 51 #### Reducing Water Loss Manipulating the Environment - Use crushed ice in shipping containers and in retail displays (commodities that tolerate direct ice contact) - Frowned on by some handlers because melting ice water could be a food safety risk - Sprinkle produce with water during retail marketing - Can be used on leafy vegetables, cool-season root vegetables, and immature fruit-vegetables (e.g., snap beans, peas, sweetcorn, and summer squash)