

# Quarantine Treatments

Postharvest Control of Insects & Other Pests

Jeff Brecht

Horticultural Science Department, Gainesville

Mark Ritenour

Indian River Research and Education Center, Fort Pierce



1



## Quarantine Pests

Follett & Neven, 2006

"A quarantine pest is a plant pest of potential economic importance to an

area that is not yet present there, or that is present but not widely distributed and officially controlled."



## Overview

 Quarantine or phytosanitary treatments eliminate, sterilize, or kill regulatory pests in exported commodities to prevent their introduction and establishment to new areas



3

# Overview

- World trade in agricultural commodities continues to increase
- Phytosanitary restrictions protect the agriculture in a region – Keeps bad bugs out

https://en.wikipedia.org/wiki/List\_of\_the\_largest\_trading\_partners\_of\_the\_United\_States

- Should be based on a risk assessment, and not a zero risk
- -Should be based on scientific data, and not politics
- At times, phytosanitary regulations, without sound scientific support, are used as trade barriers



## Overview

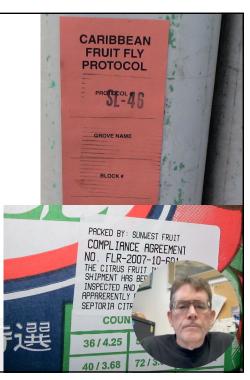
• If accepted disinfestation measures are not available, presence of quarantine pests will result in bans on marketing of fresh agricultural products in another area

- -Between countries
- -Between geographical areas within countries (e.g., between Florida and other states)



5





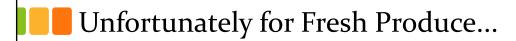




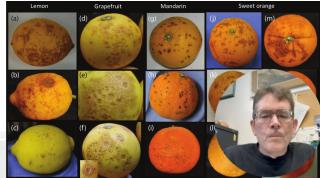

# Quarantine Treatments

- Treatment protocols are under the authority of the USDA Animal and Plant Health Inspection Service (APHIS)
- This includes overseeing the treatment application, even done in the exporting country






- Phytosanitary restrictions
  - -Often a very high degree of insect control is required before commodities are allowed in
  - -"Probit 9 mortality" = the treatment kills or sterilizes 99.9968% of the insect pests
    - ~ 3 survivor in 100,000 insects, or no survivors in 93,613 insects
- See https://acir.aphis.usda.gov/s/treatmenthub#aiX3doooooo4zk6EAA-9 for a list of approved treatments




- Kill the most resistant life stage of the pest (insect, etc.)
- 2. Cause NO physiological injury to the host commodity
- That's a TALL order! And it doesn't always work...



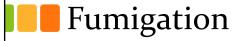


- The most important aspect of any quarantine treatment is:
  - -Preventing pest introductions
  - –NOT the impact of the treatment on product quality!



 $https://www.researchgate.net/publication/{\tt 330945775}\_Citrus/figures?lo={\tt 1000} to the control of the contr$ 

13


## **Treatments**

- Chemical
  - -Fumigation
  - Detergent washes
  - -Insecticides

- Physical
  - Temperature
    - Cold treatments
    - Heat treatments
  - Irradiation
  - Controlled atmosphe



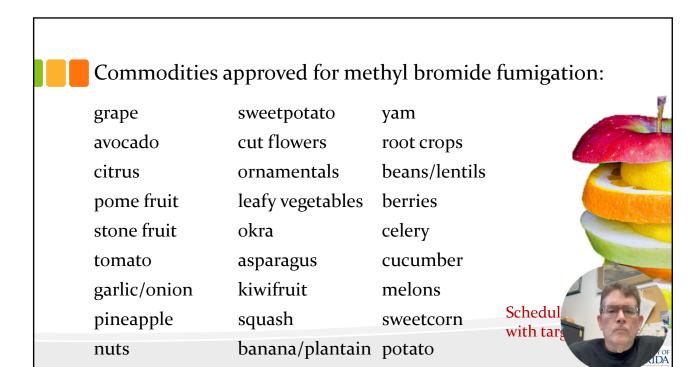
RA1



- Most common type of postharvest insect control
- Often easy to use and relatively inexpensive
- Very effective in terms of distribution and penetration
- Future availability is questionable
  - -Human health issues
  - -Environmental impacts



15




- Most commonly used (general biocide)
- Under the Montreal Protocol (UN treaty):
  - Phased out for other uses
  - Quarantine treatments & "critical uses" are exempt
- In general, there is a time temperature relationship
  - Higher temperatures require shorter exposure to the fumigant
- Many approved protocols may cause injury to the commodity





**RA1** Ritenour, Mark A, 10/3/2018



# Phosphine

- Used limited to dried fruit and nuts
  - -Fresh commodities often injured
- Slower to act than MeBr and does not penetrate as well
- On dried products, its use is often alternated with MeBr
- Phosphine is a potential carcinogen & its future is in doubt





- Many commodities are injured by HCN exposure
- HCN is also very hazardous to people
- Thus, HCN is not used very often
  - -Has been used for citrus



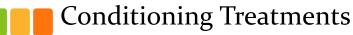
# Physical Treatments

**Temperature** 

- Advantages:
  - -No residue left on the commodity
  - -Relatively safe for workers
- Disadvantages:
  - –Possible product injury
  - -Higher energy costs
  - -Treatment times potentially longer






- Approved for a variety of insects on many commodities
- Most effective on insects from subtropical and tropical environments
  - However, crops from these areas are chilling sensitive
  - Potential used of conditioning treatments to help protect the crops from CI



| <u>Days</u> | <u>Temperature</u> * |
|-------------|----------------------|
| 10          | o°C (32°F)           |
| 11          | o.55°C (33°F)        |
| 12          | 1.11°C (34°F)        |
| 14          | 1.66°C (35°F)        |
| 16          | 2.22°C (36°F)        |

<sup>\*</sup>Maximum allowable temperature





(before cold tmnt. for chilling sensitive commodities)

| Commodity  | Duration    | Temperature (C) |
|------------|-------------|-----------------|
| Grapefruit | 3-7 days    | 10-30           |
| Mango      | 1-4 days    | 36-40           |
| Tomato     | <60 minutes | 40-55           |
| Avocado    | 10 hours    | 38              |



23



Apple Plum Pomegranate Persimmon Pear Nectarine Peach **Passionfruit** Grape **Apricot** 

**Kiwifruit** Citrus



Schedule varies with target pest



# Cold treatments are sometimes applied during marine transport

- The transit time may already be as long as the cold treatment protocol
- However, if the temperature exceeds the maximum allowable temperature, even by a fraction a degree at one reading, the treatment must be started over



25

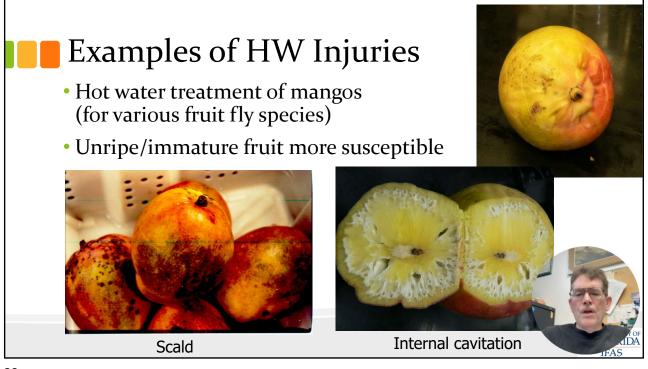


#### **Heat Treatments**

- Hot water, vapor heat, and hightemperature forced air treatments
  - -e.g., mango, lychee, papaya, citrus
- Vapor heat was one of the first postharvest insect control methods (1920's)

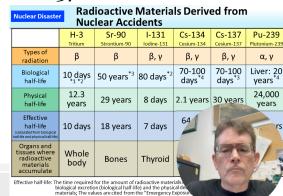





- Mostly shorter treatments than cold treatments
  - -Size of commodity will affect the rate of heating
  - -Therefore, different protocols may exist for different varieties of the same commodity, or the same variety produced in different countries.



## Mango Hot Water Treatment


- Min. pulp temp. at start of tmnt. 21°C (70°F)
- Fruit must be submerged >4 inches
- Water must circulate constantly and be min. of 46.1°C (115°F)
- Duration 65 to 90 min. depending on fruit origin, size and shape (variety)
- Fruit may be hydocooled after hot water tmnt. in water that is max. of 21°C (70°F)
- If hydrocooled, must: a) wait 30 minutes, or b) hot water treatment must be extended 10 minutes







- Sterilize versus kill insects
- Gamma rays: cobalt-60 or cesium-137
- X-rays
  - Electrically driven machine source
- Electrons from E-beam



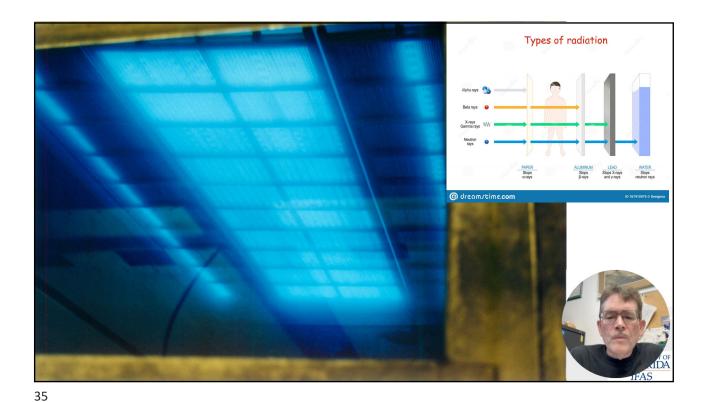
**Irradiation Proces** 

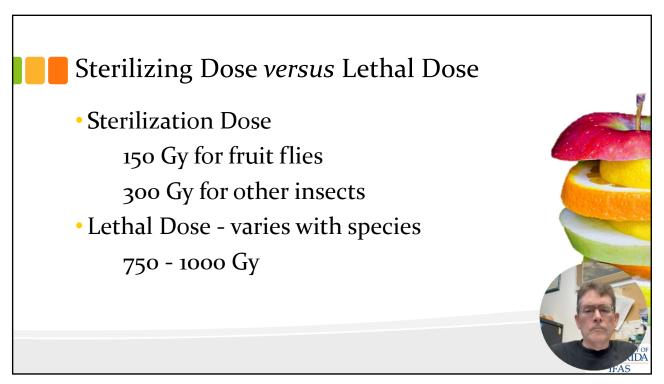
https://www.env.go.jp/en/chemi/rhm/basic-info/1st/o2-o2-o4.html

31

# Irradiation as a Quarantine Treatment

- Irradiation is approved for fruits and vegetables up to 1,000 Grays (Gy) (FDA 1986)
- APHIS requires generic minimum doses of 70-400 Gy for various Tephritid fruit flies and other arthropod plant pests
  - -'Generic' in that the required dose is not dependent on the commodity that is being treated, just the pest species




- Insect sterilization often requires doses < 300 Gy
- Decay control (esp. fungi) often requires doses > 1,000 Gy
- For required levels of irradiation to the center of pallets, outside product must receive 2-3-fold the minimum C60 or Cs137 dose
- E-beam requires treatment of individual cartons

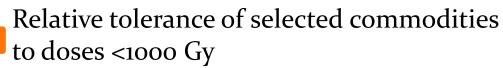




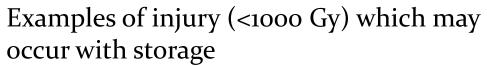




#### Irradiation Treatments


- When irradiation is used to sterilize insects, the receiving country must trust the exporters that the live insects they see are really harmless
- Social considerations:
  - –US consumers are accepting more. Acceptance by other countries (not Japan, limitations for EU)?
  - -Acceptance of irradiation facilities?






- Inhibits ripening of subtropicals and tropicals at 250-350 Gy
- Accelerates lemon degreening at >500 Gy
- May see uneven ripening and accelerated deterioration after treatment





| Minimal damage  | Inconsistent results | Significant damage |
|-----------------|----------------------|--------------------|
| Apple           | Apricot              | Avocado            |
| Cherry          | Banana               | Cucumber           |
| Guava           | Citrus               | Grape              |
| Longan/rambutan | Fig                  | Green bean         |
| Mango           | Litchi               | Olive              |
| Muskmelon       | Pear                 | Pepper             |
| Papaya          | Pineapple            | Sapodilla          |
| Peach/nectarine | Plum                 | Squash             |
| Strawberry      | Loquat               | Soursop            |
| Tomato          |                      |                    |



| Type of Injury                                 |
|------------------------------------------------|
| Internal browning; skin discoloration          |
| Formation of cavities along segment walls      |
| Peel damage, including pitting                 |
| Stem darkening                                 |
| Calyx discoloration; accelerated discoloration |
|                                                |



- CA quarantine treatments involve raising the level of CO<sub>2</sub> and/or lowering the level of O<sub>2</sub> in combination with heat or cold to reduce the duration of the lethal treatment and help maintain commodity quality
- More common for grains than produce



# Controlled Atmospheres

- Insects vary in susceptibility to CA
- Commodities tend to tolerate low O<sub>2</sub> better than high CO<sub>2</sub>
  - $-\!>\!\!60\%$   $\rm CO_{_2}$  and/or  $<\!\!0.5\%$   $\rm O_{_2}$  appear to be the best treatments
- Treatment duration is temperature dependent (higher temps = shorter duration)
- May be used in combination with heat or cold to reduce the duration of the lethal treatment and help maintain commodity quality
- Could be applied during marine transport





- Presence of coatings and package liners or wraps can have dramatic effects on responses to quarantine treatments
- Probably due to internal tissue modified atmosphere effects



## Alternative Methods

- Systems Approach
  - Integration of numerous biological & physical factors with operational procedures to provide overall quarantine security
    - Can be time-consuming & costly to develop
  - Developed so that if one of the mitigating measures fail, built in safeguards keep the overall risk to negligible levels
- Eradication
  - Removal of all target pests from a geographical area, with little chance of normal re-infestation





- Declaration as a Non-host for all or part of its growth cycle
  - -e.g., unblemished, mature green 'Cavendish' bananas from Hawaii can be harvested and shipped to the mainland as a non-host commodity even though ripe bananas are a preferred host for fruit flies
    - > Fruit flies will not lay eggs on mature green bananas
  - This can be difficult because the physiological basis for host non-preference or non-suitability by a pest is often not understood

## Alternative Methods

- Establishment of Pest Free Areas (PFAs)
  - Officially identified or established areas in which a target pest does not occur and is maintained as such
  - The identity of the commodity must be maintained throughout to prevent mixing with non-certified product
  - Enhanced by geographic (e.g., mountains or large bodies of water) or temporal (i.e., developmental period of susceptibility) barriers





- New fumigants
  - –e.g., methyl iodide, carbonyl sulfide, sulfuryl fluoride, & ozone
- New temperature treatments
  - –e.g., used of radio frequency (RF) & conditioning treatments
- Hyperbaric pressure & Vacuum

