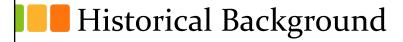


Postharvest
Deterioration
and Losses

Jeff Brecht
Horticultural Sciences Department, Gainesville
Mark Ritenour
Indian River Research and Education Center, Fort Pierce

What is Postharvest Biology?


- A Pragmatic (practical) science
- Primarily deals with Perishable Commodities
- By definition: Postharvest = After Harvest
 - Also concerned with preharvest factors (seed source, rootstock, etc.) because they strongly influence postharvest quality. Fruit quality is set during growth.
 - & the harvest of the crop (e.g., when & how to harvest; maturity standards)
- Ultimately, maximum product quality is determined (fixed) at harvest

3

- Harvest commodities at their optimum maturity
- Maintain the commodity's internal and external quality throughout harvest, packing, storage and distribution. Remember, it is <u>Alive</u> during this process
- Deliver the commodity to consumers at the time and in a form (e.g., ripe, cut up, etc.) that they will purchase

- Early postharvest practices:
 - -Dried fruits, vegetables, meats, etc.
 - –Fermentation of juices
 - -Salting or smoking
 - -Canning
- All these methods KILL the product => product is easier to transport and store

Historical Background

- Early Storage Practices:
 - -Basket making developed by 7,000 B.C.
 - -Underground pits and silos 9,000 B.C. By Roman times, silos were the major means of long term storage
 - -Roman era modified atmosphere storage of grains
 - -Ice refrigeration developed in 1803

- Postharvest issues became more important as cities developed (urbanization)
 - -The Industrial Revolution (18th century)
 - -The Problem: How to deliver (quality) fresh fruits and vegetables from areas of production to areas of consumption
- All fresh produce is alive => A Challenge to Keep Healthy Until Consumed!

Historical Background

- Early Storage Practices Continued:
 - -1819, first Modified Atmosphere research (France)
 - −1855 & 59, mechanical refrigeration invented
 - −1872, ice refrigerated rail cars common
 - -1889 ammonia refrigeration widely used for icemaking
 - −1928, refrigerated displays used in retail stores
 - -Controlled Atmosphere (CA) research in 1927, a in 1929, the first commercial CA storage (England

- World population has reached 8.17 billion
- Technological advances have helped us feed much of the world
 - -e.g. China, India & Brazil
- Many parts of the world still in need
 - -Western style, capitol intensive, methods often not suitable for an area
 - –Advances have resulted in some problems (e.g., Egypt's Aswan High Dam, Calif. Central Valley)

a

World-Wide Perspective

- Food distribution is the main worldwide problem – not food production
 - Urbanization expected to continue at a greater rate in developing countries
 - -Produce grown in these areas are the least studied
- Worldwide production (2022):
 - -Cereals (durable food goods) = \sim 3.06 billion MT
 - −Fruits, Vegetables, Melons, Roots & Tubers = ~2.76 billion MT

- Compared to grains:
 - -More subject to deterioration after harvest (shelf life measured in days to months vs. >1 year)
 - -Relatively larger in size (up to 5 kg vs. < 1 g)
 - -Soft textured
 - -Higher water content (70 to 90+% vs. 10 to 20%)
 - -Higher respiration and heat production

Characteristics of Fresh Produce

- Living tissues High respiration and heat production
- 2. High water content (around 90-95%) prone to injuries and shriveling
- Highly variable in physiology and composition
- 4. Highly subject to pathological deterioration

Postharvest Losses

- •Only very rough estimates are available
 - −5 to 25% in developed countries
 - −20 to 50% in developing countries
- In the US, a large portion at the consumer level = Waste (discarded edible food)
- Loss of product = much more that just the cost of the commodity

13

Food Loss *vs.* Food Waste

- Food Loss: the food is eaten or destroyed by animals, insects or microbes; spoiled, inedible
- Food Waste: the food is edible but is not consumed due to poor quality or unfavorable market conditions
- The total of loss + waste is the same (about 40%) in both developing and developed countries

Other Losses

- Loss of energy & labor (e.g., during packinghouse operations)
- Loss of materials (e.g., packaging)
- Cost of reconditioning (a big reason for waste)
- Cost of waste disposal

15

Other Losses

- Loss of food value (e.g., nutrients)
- Loss of organoleptic quality
 - -Color changes
 - -Water loss
 - –Carbohydrate changes (e.g., sugar to starch conversion)
 - -Volatile changes
 - -Breakdown of proteins, cell wall components, softening, etc.

Causes of Postharvest Loss

- Respiration (metabolism)
- Compositional changes
- Morphological changes
- Physiological disorders
- General senescence

17

Causes of Postharvest Loss

- Temperature
- Physical damage
- Pathogens
- Relative humidity
- Atmospheric composition

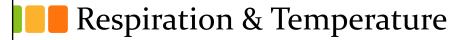
- Light
- Gravity
- Rodents and other animals
- Contamination

Fresh Commodities Are Still ALIVE!

• They carry out respiration:

Sugar +
$$O_2$$
 =>
$$CO_2 + Water + Energy + Heat$$

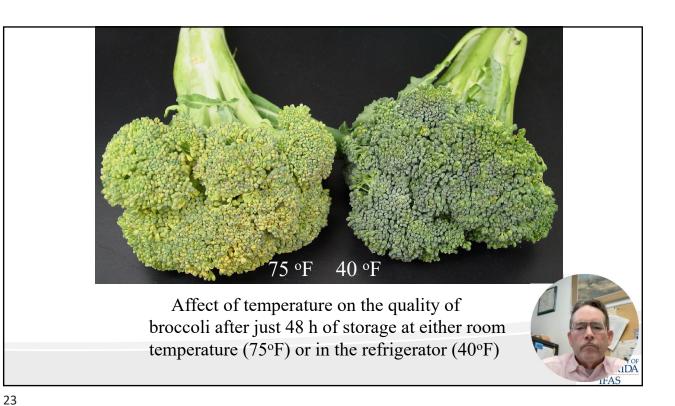
19


Respiration and Shelf Life

 Respiration rate is inversely related to shelf life.

Higher respiration

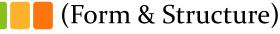
=> Shorter Shelf Life


- Temperature is the most important factor influencing the postharvest life of a given commodity
 - Dictates the speed of chemical reactions (including respiration)
- Typically, for every 18 °F (10 °C) increase, respiration increases between 2 and 4 fold

Example

Temperature (°F/°C)	Shelf-Life
32/0	100
50/10	33
68/20	13
86/30	7
104/40	4

- Water loss
- Nutrients
- Vitamins
- Antioxidants
- Starch ⇔ Sugar
- etc.



- Besides resulting in direct loss of salable weight, it is also an <u>important source of quality loss</u>
 - Appearance quality wilting, shriveling, accelerated development of injuries
 - -Textural quality loss of crispness, juiciness, etc.
 - -Nutritional quality e.g. vitamins A & C
- Rate of water loss influenced by:
 - -Environmental factors e.g. relative humidity
 - -Anatomical factors stomates, hairs, etc.

Morphological Changes

 Because horticultural commodities are living (and sometimes still growing) they often continue development in ways that sometimes detract in quality

Changes include:

- —Sprouting (onions, tubers, root crops)
- –Rooting (onions, root crops)
- -Elongation & Curvature (asparagus, gladiolus)
- -Seed Germination (tomato, pepper, grapefruit)

Physiological Disorders

- Definition:
 - -"Tissue damage or breakdown not related to pathogens, insects or mechanical damage."

27

Physiological Disorders

- Temperature
 - -High temperature injury, freezing injury, or chilling injury
- Altered atmospheric gas concentrations
 - -Reduced O₂ or elevated CO₂
- Nutrition
 - -e.g., calcium deficiency or boron toxicity

- Mentioned above with respiration and physiological disorders
- > Affects all aspects of metabolism
- Temperature greatly effects water loss.
- Lower temperature also slows pathogen (human and plant) development

Physical Damage

- Causes the greatest amount of loss to fresh horticultural products
- Affects (among other things):
 - Respiration, ethylene production, ripening, and other metabolic processes
 - -Pathogen growth and ability to invade tissue
 - -Tissue discoloration

Photo courtesy of Steve Sargent

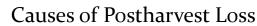
Pathology (decay)

- Fungi, bacteria and viruses
- Preharvest (latent) and postharvest infections

 Most postharvest infections are a result of rupturing the epidermis of the commodity

31

- Higher relative humidity slows water loss from the commodity
- High relative humidities (e.g., >95%) can weaken cartons
- Free moisture stimulates pathogen development



Atmospheric Composition

Modified or Controlled Atmospheres

- Altering the normal gas composition surrounding a commodity (e.g., raising or lowering O₂ or CO₂ concentrations)
- Modified Atmospheres (MA)
 - Passive. The commodity is placed in a gas impermeable container and the crop's respiration consumes (lowers)
 O₂ and gives off (increases)
- Controlled Atmospheres (CA)
 - Active. Gas concentrations are actively regulated using special equipment

33

Environmental Factors

- Light
 - -Color and morphological changes (e.g., potato greening)
- Gravity
 - -Morphological changes (e.g., bending)
- Rodents and other animals
- Contamination (food safety)

- Preharvest factors:
 - -Cultivars & Molecular Biology
 - -Nutrition & Water effects
 - -Weather conditions (temperature, humidity, etc.)
 - –Field sanitation (both for decay & human pathogens)

Commercial Considerations

- Harvesting:
 - –Is everything ready for arrival of the harvested product?
 - Labor to harvest, grade, pack, ship, etc.
 - Materials to wash, coat, label, pack, ship, etc.
 - –Best time to harvest for fresh, processing, storage?
 - -Use of harvest aids

Commercial Considerations

• Preliminary grading in the field:

–Remove unmarketable produce as soon

as possible

37

Commercial Considerations

• Packingline operations:

Photo courtesy of Steve Sargent

-Washing, grading, sorting, sizing, waxing, etc.

-Each step costs \$\$\$\$. Use only if increases value

of the crop

- Packaging:
 - Protects the product, reduces water loss, orients the product, excludes light & communicates information
 - Must be economic, able to support stacking, allow ventilation (cooling), facilitate recycling or disposal at destination markets

Commercial Considerations

- Postharvest development:
 - Ethylene degreening or ripening
 - -Curing

- Rapid cooling:
 - -Air cooling
 - Room
 - Forced-air
 - -Hydrocooling
 - -Ice Cooling
 - Top icing
 - Liquid ice injection
 - -Vacuum Cooling

Commercial Considerations

- Storage:
 - -Increases the cost of a product
 - -Accurate temperature and RH control critical
 - -CA or MA storage
- Transportation:
 - -Water inexpensive but slow
 - -Rail more expensive but faster
 - -Truck predominant method. Fast & reliable
 - Air Fastest, expensive, & inconsistent scheduling and temperature control

• Marketing:

- -Identify markets and qualities desired
- Entire process should be geared to deliver what the consumer will buy

• Retailing:

- -Educate the retailer how to handle your commodity
- -Continuation of the temperature, RH and sanitation chain
- -Reconditioning?

