

What is Postharvest Biology? • A Pragmatic (practical) science · Primarily deals with Perishable Commodities • By definition: Postharvest = After Harvest - Also concerned with preharvest factors (seed source, rootstock, etc.) because they strongly influence postharvest quality. Fruit quality is set during growth. - & the harvest of the crop (e.g., when & how to harvest; maturity · Ultimately, maximum product quality is determined (fixed) at harvest

Postharvest Goals • Harvest commodities at their optimum maturity • Maintain the commodity's internal and external quality throughout harvest, packing, storage and distribution. Remember, it is Alive during this process • Deliver the commodity to consumers at the time and in a form (e.g., ripe, cut up, etc.) that they will purchase

3

Historical Background • Early postharvest practices: -Dried fruits, vegetables, meats, etc. -Fermentation of juices -Salting or smoking -Canning All these methods KILL the product => product is easier to transport and store

Historical Background • Early Storage Practices: -Basket making developed by 7,000 B.C. -Underground pits and silos - 9,000 B.C. By Roman times, silos were the major means of long term storage -Roman era - modified atmosphere storage of -Ice refrigeration developed in 1803

5 6

Historical Background

- Postharvest issues became more important as cities developed (urbanization)
 - -The Industrial Revolution (18th century)
 - The Problem: How to deliver (quality) fresh fruits and vegetables from areas of production to areas of consumption
- All fresh produce is alive => A Challenge to Keep Healthy Until Consumed!

–1872, ice refrigerated rail cars common –1889 ammonia refrigeration widely used for icemaking

-1928, refrigerated displays used in retail stores

-Controlled Atmosphere (CA) research in 1927, a in 1929, the first commercial CA storage (England

7

World-Wide Perspective

- World population has reached 8.17 billion
- Technological advances have helped us feed much of the world
 - -e.g. China, India & Brazil
- Many parts of the world still in need
- Western style, capitol intensive, methods often not suitable for an area
- -Advances have resulted in some problems (e.g., Egypt's Aswan High Dam, Calif. Central Valley)

World-Wide Perspective

- Food distribution is the main worldwide problem – not food production
 - Urbanization expected to continue at a greater rate in developing countries
 - -Produce grown in these areas are the least studied
- Worldwide production (2022):
 - -Cereals (durable food goods) = ~3.06 billion MT
- −Fruits, Vegetables, Melons, Roots & Tubers = ~2.76 billion MT

9

10

8

Characteristics of Perishable Commodities

- Compared to grains:
 - -More subject to deterioration after harvest (shelf life measured in days to months vs. >1 year)
 - -Relatively larger in size (up to 5 kg vs. < 1 g)
 - -Soft textured
- -Higher water content (70 to 90+% vs. 10 to 20%)
- -Higher respiration and heat production

- Living tissues High respiration and heat production
- 2. High water content (around 90-95%) prone to injuries and shriveling
- 3. Highly variable in physiology and composition
- 4. Highly subject to pathological deterioration

or Control

11

Postharvest Losses

- •Only very rough estimates are available
 - −5 to 25% in developed countries −20 to 50% in developing countries
- In the US, a large portion at the consumer level = Waste (discarded edible food)
- Loss of product = much more that just the cost of the commodity

Food Loss vs. Food Waste

- Food Loss: the food is eaten or destroyed by animals, insects or microbes; spoiled, inedible
- Food Waste: the food is edible but is not consumed due to poor quality or unfavorable market conditions
- The total of loss + waste is the same (about 40%) in both developing and developed countries

13 14

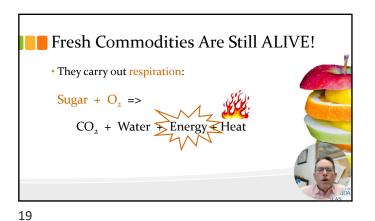
- Loss of energy & labor (e.g., during packinghouse operations)
- Loss of materials (e.g., packaging)
- Cost of reconditioning (a big reason for waste)
- Cost of waste disposal

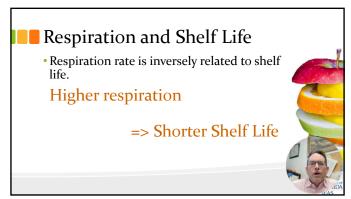
- Loss of food value (e.g., nutrients)
- Loss of organoleptic quality
- -Color changes
- -Water loss
- -Carbohydrate changes (e.g., sugar to starch conversion)
- -Volatile changes
- -Breakdown of proteins, cell wall components softening, etc.

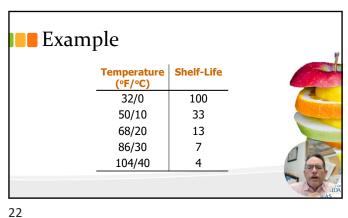
15 16

Causes of Postharvest Loss Internal Factors

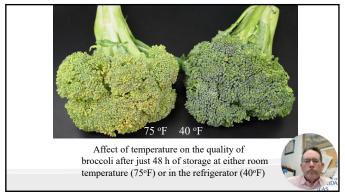
- Respiration (metabolism)
- Compositional changes
- Morphological changes
- · Physiological disorders
- General senescence

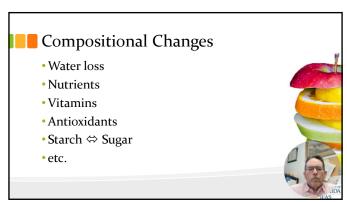

Causes of Postharvest Loss Outside Factors


- Temperature
- Physical damage
- Pathogens
- Relative humidity
- Atmospheric composition
- Light
- Gravity
- Rodents and other animals
- Contamination



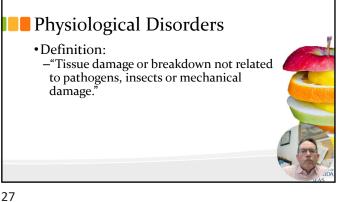
20


**Temperature is the most important factor influencing the postharvest life of a given commodity

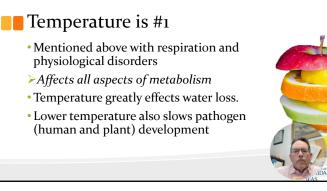

-Dictates the speed of chemical reactions (including respiration)

*Typically, for every 18 °F (10 °C) increase, respiration increases between 2 and 4 fold

21



23 24


Morphological Changes (Form & Structure) · Because horticultural commodities are living (and sometimes still growing) they often continue development in ways that sometimes detract in quality Changes include: -Sprouting (onions, tubers, root crops) -Rooting (onions, root crops) -Elongation & Curvature (asparagus, gladiolus) -Seed Germination (tomato, pepper, grapefruit)

25 26

Physiological Disorders Temperature -High temperature injury, freezing injury, or chilling injury Altered atmospheric gas concentrations -Reduced O, or elevated CO, Nutrition -e.g., calcium deficiency or boron

28

Physical Damage · Causes the greatest amount of loss to fresh horticultural products Affects (among other things): -Respiration, ethylene production, ripening, and other metabolic processes -Pathogen growth and ability to invade tissue -Tissue discoloration

29 30

Pathology (decay)

- Fungi, bacteria and viruses
- Preharvest (latent) and postharvest infections
- Most postharvest infections are a result of rupturing the epidermis of the commodity

Relative Humidity

- Higher relative humidity slows water loss from the commodity
- High relative humidities (e.g., >95%) can weaken cartons
- Free moisture stimulates pathogen development

31 32

Atmospheric Composition Modified or Controlled Atmospheres

- Altering the normal gas composition surrounding a commodity (e.g., raising or lowering O₂ or CO₂ concentrations)
- Modified Atmospheres (MA)
- Passive. The commodity is placed in a gas impermeable container and the crop's respiration consumes (lowers)
 O₂ and gives off (increases)
- Controlled Atmospheres (CA)
 - Active. Gas concentrations are actively regulated using special equipment

Causes of Postharvest Loss

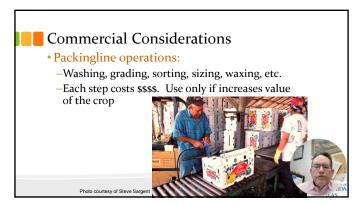
Environmental Factors

- Light
 - -Color and morphological changes (e.g., potato greening)
- Gravity
- -Morphological changes (e.g., bending)
- Rodents and other animals
- Contamination (food safety)

33 34

Commercial Considerations

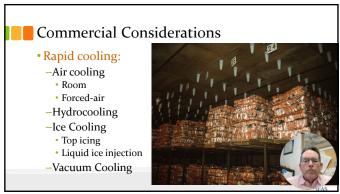
- Preharvest factors:
 - -Cultivars & Molecular Biology
- -Nutrition & Water effects
- -Weather conditions (temperature, humidity, etc.)
- -Field sanitation (both for decay & human pathogens)


Commercial Considerations

- Harvesting:
 - –Is everything ready for arrival of the harvested product?
 - Labor to harvest, grade, pack, ship, etc.
 - Materials to wash, coat, label, pack, ship, etc.
 - -Best time to harvest for fresh, processing, storage?
 - -Use of harvest aids

35 36

37 38


Commercial Considerations

• Postharvest development:

- Ethylene degreening or ripening
- Curing

40

39

Commercial Considerations

• Storage:

-Increases the cost of a product

-Accurate temperature and RH control critical

-CA or MA storage

• Transportation:

-Water - inexpensive but slow

-Rail - more expensive but faster

-Truck - predominant method. Fast & reliable

-Air - Fastest, expensive, & inconsistent scheduling and temperature control

41 42

- Marketing:
- -Identify markets and qualities desired
- -Entire process should be geared to deliver what the consumer will buy
- Retailing:
 - -Educate the retailer how to handle your commodity
- -Continuation of the temperature, RH and sanitation chain
- -Reconditioning?

