Subtropical Fruits

Mark Ritenour
Indian River Research and Education Center, Fort Pierce

Jeff Brecht
Horticultural Science Department, Gainesville

Some of these fruits are grown in tropical areas.
These fruits are diverse in:
- Morphology
- Composition
- Postharvest physiology
- And in their optimum postharvest handling requirements

Subtropical Fruits Include
- Atemoya
 ![Atemoya](http://www.2ndlight.com/forum42ndlight/attachments/Atemoya901ASIT.jpg)
- Avocado
 ![Avocado](http://www.cookbookwiki.com/images/e/ef/Carob.jpg)
- Carob (Chinese date)
 ![Carob](http://www.2ndlight.com/forum42ndlight/attachments/Atemoya901ASIT.jpg)
Subtropical Fruits Include

- Cherimoya
 ![Cherimoya Image](http://bigy.com/content/prod/i/var/cherimoya.jpg)

- Citrus
 ![Citrus Image](http://www.wegmans.com/kitchen/agrilink/produce/fruits/images/date.jpg)

- Date

Subtropical Fruits Include

- Fig
 ![Fig Image](http://bulletin.coa.gov.tw/htmlarea_graph/web_articles/5761/jujube01.jpg)

- Jujube

Subtropical Fruits Include

- Kiwifruit
 ![Kiwifruit Image](http://media.apn.co.nz/webcontent/image/jpg/kiwifruit.JPG)

- Longan
 ![Longan Image](http://www.khmerkromrecipes.com/photo_recipes/longan.jpg)

- Loquat
 ![Loquat Image](http://darkwing.uoregon.edu/~iinaasim/Hist%20410/Loquat.jpg)
Subtropical Fruits Include

- Lychee
- Olive
- Persimmon
- Pomegranate

Groupings

- **Highly Perishable:**
 - Fresh figs, loquat, lychee
- **Moderately Perishable:**
 - Avocado, cherimoya, olive, persimmon
- **Less Perishable:**
 - Citrus, carob (dry), dried figs, date, jujube, kiwifruit, pomegranate

Class (mg CO₂/kg-hr) at 5 °C (41 °F) Commodities

<table>
<thead>
<tr>
<th>Class</th>
<th>(mg CO₂/kg-hr)</th>
<th>Commodities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very Low</td>
<td>< 5</td>
<td>Dates, dried fruits and vegetables, nuts</td>
</tr>
<tr>
<td>Low</td>
<td>5 - 10</td>
<td>Apple, beet, celery, citrus fruits, cranberry, garlic, grape, honeydew melon, kiwifruit, onion, papaya, persimmon, pineapple, potato (mature), sweet potato, watermelon</td>
</tr>
<tr>
<td>Moderate</td>
<td>10 - 20</td>
<td>Apricot, banana, blueberry, cabbage, cantaloupe, carrot (topped), celeriac, cherry, cucumber, fig, gooseberry, lettuce (head), mango, nectarine, olive, peach, pear, plum, potato (immature), radish (topped), summer squash, tomato</td>
</tr>
<tr>
<td>High</td>
<td>20 - 40</td>
<td>Avocado, blackberry, carrot (with tops), cauliflower, leeks, lettuce (leaf), lima bean, radish (with tops), raspberry</td>
</tr>
<tr>
<td>Very High</td>
<td>40 - 60</td>
<td>Artichoke, bean sprouts, broccoli, Brussels sprouts, cut flowers, endive, green onions, kale, okra, snap bean, watercress</td>
</tr>
<tr>
<td>Extremely High</td>
<td>> 60</td>
<td>Asparagus, mushroom, parsley, peas, spinach, sweet corn</td>
</tr>
</tbody>
</table>
MA or CA

- 2-5% O₂ and 5-10% CO₂ (MA or CA) or hypobaric storage can:
 - Reduce respiration and ethylene production
 - Reduce sensitivity to ethylene
 - Delay ripening
 - And extend the storage life of tropical fruits by 25 to 100%

Ripening Patterns

- Climacteric:
 - Avocado, Cherimoya, Fig, Kiwifruit, Persimmon
 - Avocados do not ripen on the tree.
- Non-climacteric:
 - Citrus, Date, Jujube, Longan, Loquat, Lychee, Olive, Pomegranate

Compositional Characteristics

- Citrus:
 - Good source of vitamin C (#1 contributor of vitamin C to human diet in U.S.)
- Avocados:
 - High energy value (higher than meat of equal weight)
 - (along with olives) have the highest protein and fat content of any tree fruit (excluding nuts)
 - Good source of niacin and thiamin
Maturity & Quality Standards

- Includes:
 - Internal quality attributes (sugars, acids, ratio, etc.)
 - Avocado (CA): minimum dry weight (19 to 25% depending on cultivar)
 - Citrus: juice content, sugars, acids, sugar/acid ratio
 - Exterior attributes (color, shape, size, freedom from defects, etc.)
 - Avocado (FL): days after full bloom

Optimum Storage Conditions

<table>
<thead>
<tr>
<th>Fruit</th>
<th>Temperature (°F)</th>
<th>Temperature (°C)</th>
<th>RH (%)</th>
<th>Max. Shelf Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Orange</td>
<td>32-34</td>
<td>04</td>
<td>85-90</td>
<td>56 wk</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>58-60</td>
<td>15-16</td>
<td>85-90</td>
<td>68 wk</td>
</tr>
<tr>
<td>Tangerine (mandarin)</td>
<td>40</td>
<td>4</td>
<td>90-95</td>
<td>24 wk</td>
</tr>
<tr>
<td>Lemon</td>
<td>50</td>
<td>10</td>
<td>85-90</td>
<td>14 mo</td>
</tr>
<tr>
<td>Lime</td>
<td>50</td>
<td>10</td>
<td>85-90</td>
<td>68 wk</td>
</tr>
<tr>
<td>Kumquat</td>
<td>39</td>
<td>4</td>
<td>90-95</td>
<td>24 wk</td>
</tr>
<tr>
<td>Pummelo</td>
<td>45-48</td>
<td>7-9</td>
<td>85-90</td>
<td>12 wk</td>
</tr>
<tr>
<td>Avocado</td>
<td>40-55</td>
<td>4-13</td>
<td>85-90</td>
<td>46 wk</td>
</tr>
<tr>
<td>Cherimoya</td>
<td>55</td>
<td>13</td>
<td>90-95</td>
<td>24 wk</td>
</tr>
<tr>
<td>Dates</td>
<td>32</td>
<td>0</td>
<td>75</td>
<td>612 mo</td>
</tr>
<tr>
<td>Figs (fresh)</td>
<td>33-32</td>
<td>1-0</td>
<td>85-90</td>
<td>740 days</td>
</tr>
<tr>
<td>Kiwifruits</td>
<td>32-36</td>
<td>02</td>
<td>90-98</td>
<td>35 mo</td>
</tr>
<tr>
<td>Loquat</td>
<td>32</td>
<td>0</td>
<td>90</td>
<td>3 wk</td>
</tr>
<tr>
<td>Lychee</td>
<td>35</td>
<td>2</td>
<td>90-95</td>
<td>35 wk</td>
</tr>
<tr>
<td>Olive</td>
<td>41-50</td>
<td>5-10</td>
<td>85-90</td>
<td>46 wk</td>
</tr>
<tr>
<td>Persimmon</td>
<td>30</td>
<td>4</td>
<td>90</td>
<td>34 mo</td>
</tr>
<tr>
<td>Pomegranate</td>
<td>41</td>
<td>5</td>
<td>90-95</td>
<td>23 mo</td>
</tr>
</tbody>
</table>
MA or CA

• Avocado:
 – Potential use of 2-5% O₂ and 3-10% CO₂

• Citrus:
 – Potential use of 5-10% O₂ and 0-10% CO₂

Physiological Disorders

• Most are sensitive to chilling injury
 – Wide differences in susceptibility
 • E.g. Florida oranges vs. grapefruit
 – Those not sensitive to chilling injury include those that are harvested fully ripe (date and figs), and ‘Hachiya’ persimmons
 – ‘Fuyu’ persimmons are chilling sensitive

Physiological Disorders

• Freezing injury
 – Freezing injured fruit can be separated at the packinghouse based on density, or using X-ray or light transmission methods
Physiological Disorders

- Citrus fruit have a variety of physiological disorders (besides CI)
 - Postharvest Pitting
 - Stem-end Rind Breakdown (SERB)
 - Aging
 - Stylar-end Russetting
 - Blossom-end clearing
 - Creasing
 - Blue Albedo
 - Zebra Skin

Decay Control

- **Avocado:**
 - Anthracnose – esp. in humid Florida. Not serious in California
 - Dothiorella gregaria – important in California
 - Stem-end rots (Diplobia natalesis, Phomopsis citri) – serious in Florida and other humid places

Decay Control

- **Citrus:**
 - Stem-end rots (Diplobia natalesis, Phomopsis citri) – serious in Florida and other humid places
 - Anthracnose – esp. in humid Florida. Not serious in California
 - Sour rot (Geotrichum candidum).
 - Green & Blue mold (Penicillium digitatum & italicum)
Harvest & Transport

<table>
<thead>
<tr>
<th>Harvest & Transport</th>
<th>Dry</th>
<th>Final Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungicide Drench</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Degreening?</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dump</td>
<td>Dry</td>
<td></td>
</tr>
<tr>
<td>Pre-size & Pre-grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wet</td>
<td>Wash</td>
<td>Transport to Market</td>
</tr>
</tbody>
</table>

Postharvest Handling of Citrus

Before & After

Harvest

Pre-size & Pre-grade

Wax

Wash
Degreening

<table>
<thead>
<tr>
<th>Florida</th>
<th>California</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>28 to 29°C (82 to 85°F)</td>
</tr>
<tr>
<td>Ethylene</td>
<td>5 ppm</td>
</tr>
<tr>
<td>Humidity</td>
<td>90 to 96%</td>
</tr>
<tr>
<td>Ventilation (keep below 0.1% CO₂)</td>
<td>1 air change per hour</td>
</tr>
<tr>
<td>Air Circulation</td>
<td>100 CFM per 900 lb. bin</td>
</tr>
</tbody>
</table>

(CFM = cubic feet per minute)
Cooling & Storage