Example Psychrometric and Water Loss Problems

Fall 2014

Commodity: Spinach

Storage room dry bulb temperature: $\mathbf{2 0}^{\mathbf{\circ}} \mathrm{C}$
Storage room wet bulb temperature: $\mathbf{1 3}^{\mathbf{0}} \mathbf{C}$
What is the storage room humidity (look it up on the psychrometric chart)?
What is the approximate VP of the room air at $20^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)?

What is the approximate saturation vapor pressure (SVP) at $20{ }^{\circ} \mathrm{C}$?
Initial commodity weight: $\mathbf{2 0 0} \mathbf{g}$
Commodity weight after 1 day in storage: $\mathbf{1 5 2} \mathbf{g}$
Calculate commodity weight loss after 1 days in storage:
What is the vapor pressure difference (VPD) between the commodity and the storage room air?
$\mathrm{VPD}=\mathrm{SVP}_{\text {tissue }}-\mathrm{VP}_{\text {air }}$

What is the rate of water loss per hour (in percent water loss per hour)?
$\mathrm{J}=\Delta$ weight during storage \div length of storage (hr)

Example Psychrometric and Water Loss Problems

Fall 2014
What is the proportionality constant (K) for this commodity?
$\mathrm{J}=\mathrm{K} * \mathrm{VPD}$
$\mathrm{K}=\mathrm{J} / \mathrm{VPD}$

If this commodity is instead placed in a $5^{\circ} \mathrm{C}$ cold room with a wet bulb temperature of $4^{\circ} \mathrm{C}$, What is the relative humidity of the air be (look up from the psychrometric chart)?

What is the approximate VP of the room air at $5^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)?

What is the approximate SVP at $5^{\circ} \mathrm{C}$?
What is the VPD? VPD $=$ SVP $_{\text {tissue }}-$ VP $_{\text {air }}$

What is the expected rate of water loss when this commodity is stored at $5^{\circ} \mathrm{C}$?
$\mathrm{J}=\mathrm{K} * \mathrm{VPD}$

Example Psychrometric and Water Loss Problems

Fall 2014

Commodity: Apple

Storage room dry bulb temperature: $\mathbf{2 0}^{\mathbf{\circ}} \mathrm{C}$
Storage room wet bulb temperature: $\mathbf{1 3}^{\mathbf{}} \mathrm{C}$
What is the storage room humidity (look it up on the psychrometric chart)?
What is the approximate VP of the room air at $20^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)?

What is the approximate SVP at $20{ }^{\circ} \mathrm{C}$?
Initial commodity weight: $\mathbf{1 6 4} \mathbf{g}$
Commodity weight after 7 days in storage: $\mathbf{1 6 2} \mathbf{g}$
Calculate commodity weight loss after 7 days in storage:
What is the VPD between the commodity and the storage room air?
$\mathrm{VPD}=\mathrm{SVP}_{\text {tissue }}-\mathrm{VP}_{\text {air }}$

What is the rate of water loss per hour (in percent water loss per hour)?
$\mathrm{J}=\Delta$ weight during storage \div length of storage (hr)

What is the proportionality constant (K) for this commodity?
$\mathrm{J}=\mathrm{K} * \mathrm{VPD}$
$\mathrm{K}=\mathrm{J} / \mathrm{VPD}$

If this commodity was then cooled to $5^{\circ} \mathrm{C}$ and stored at the $5^{\circ} \mathrm{C}$ cold room with a wet bulb temperature of $4^{\circ} \mathrm{C}$,
What is the relative humidity of the air (look up from the psychrometric chart)?
What is the approximate VP of the room air at $5^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)?

What is the approximate SVP at $5^{\circ} \mathrm{C}$?
What is the VPD? VPD $=$ SVP $_{\text {tissue }}-$ VP $_{\text {air }}$

What is the expected rate of water loss when this commodity is stored at $5^{\circ} \mathrm{C}$?

$$
\mathrm{J}=\mathrm{K} * \mathrm{VPD}
$$

Example Psychrometric and Water Loss Problems

Fall 2014

Answers

Commodity: Spinach

Storage room dry bulb temperature: $\mathbf{2 0}^{\mathbf{\circ}} \mathrm{C}$
Storage room wet bulb temperature: $\mathbf{1 3}^{\mathbf{}} \mathbf{C}$
What is the storage room humidity (look it up on the psychrometric chart)? $\mathbf{\sim 4 5 \%}$
What is the approximate VP of the room air at $20^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)? $\sim \mathbf{1 . 2} \mathbf{~ k P a}$.
What is the approximate SVP at $20^{\circ} \mathrm{C}$? $\sim 2.3 \mathbf{~ k P a}$
Initial commodity weight: $\mathbf{2 0 0} \mathbf{g}$
Commodity weight after 1 day in storage: $\mathbf{1 5 2} \mathbf{g}$
Calculate commodity weight loss after 1 days in storage: 200-152 $=\mathbf{4 8} \mathbf{g}$
What is the VPD between the commodity and the storage room air?

$$
\mathrm{VPD}=\mathrm{SVP}_{\text {tissue }}-\mathrm{VP}_{\text {air }}=2.3 \mathrm{kPa}-1.2 \mathrm{kPa}=\mathbf{1 . 1} \mathbf{~ k P a}
$$

What is the rate of water loss per hour (in percent water loss per hour)?

$$
\begin{aligned}
& \mathrm{J}=\Delta \text { weight during storage } \div \text { length of storage }(\mathrm{hr})=48 \mathrm{~g} \div(1 \text { day } * 24 \mathrm{hr} / \text { day }) \\
& \\
& =48 \mathrm{~g} \div 24 \mathrm{hr}=\mathbf{2} \mathbf{g} / \mathbf{h r}=\mathbf{1 \%} / \mathbf{h r}
\end{aligned}
$$

What is the proportionality constant (K) for this commodity?

$$
\begin{aligned}
& \mathrm{J}=\mathrm{K} * \mathrm{VPD} \\
& \mathrm{~K}=\mathrm{J} / \mathrm{VPD}=1 \% / \mathrm{hr} \div 1.1 \mathrm{kPa}=\mathbf{0 . 9 1 \%} / \mathrm{hr} \cdot \mathrm{kPa}
\end{aligned}
$$

Example Psychrometric and Water Loss Problems

Fall 2014

If this commodity is instead placed in a $5^{\circ} \mathrm{C}$ cold room with a wet bulb temperature of $4^{\circ} \mathrm{C}$,
What is the relative humidity of the air be (look up from the psychrometric chart)? $\mathbf{\sim 8 8 \%}$
What is the approximate VP of the room air at $5{ }^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)? $\sim \mathbf{0 . 7 2} \mathbf{~ k P a}$.
What is the approximate SVP at $5^{\circ} \mathrm{C} ? \sim \mathbf{0 . 8 8} \mathbf{~ k P a}$
What is the VPD? VPD $=\mathrm{SVP}_{\text {tissue }}-\mathrm{VP}_{\mathrm{air}}=0.88-0.72=\mathbf{0 . 1 6} \mathbf{~ k P a}$.
What is the expected rate of water loss when this commodity is stored at $5^{\circ} \mathrm{C}$?

$$
\mathrm{J}=\mathrm{K} * \mathrm{VPD}=\mathbf{0 . 9 1 \%} / \mathrm{hr} \bullet \mathrm{kPa} * 0.16 \mathrm{kPa}=0.15 \% / \mathrm{hr}
$$

Commodity: Apple

Storage room dry bulb temperature: $\mathbf{2 0}^{\mathbf{\circ}} \mathrm{C}$
Storage room wet bulb temperature: $\mathbf{1 3}^{\mathbf{}} \mathbf{C}$
What is the storage room humidity (look it up on the psychrometric chart)? $\mathbf{\sim 4 5 \%}$
What is the approximate VP of the room air at $20^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)? $\sim \mathbf{1 . 2} \mathbf{~ k P a}$.
What is the approximate SVP at $20^{\circ} \mathrm{C}$? $\sim \mathbf{2 . 3} \mathbf{~ k P a}$
Initial commodity weight: $\mathbf{1 6 4} \mathbf{g}$
Commodity weight after 7 days in storage: $\mathbf{1 6 2} \mathbf{g}$
Calculate commodity weight loss after 7 days in storage: $\mathbf{1 6 4 - 1 6 2}=\mathbf{2} \mathbf{g}$

What is the VPD between the commodity and the storage room air?
$\mathrm{VPD}=\mathrm{SVP}_{\text {tissue }}-\mathrm{VP}_{\text {air }}=2.3 \mathrm{kPa}-1.2 \mathrm{kPa}=\mathbf{1 . 1} \mathbf{~ k P a}$
What is the rate of water loss per hour (in percent water loss per hour)?

$$
\begin{aligned}
\mathrm{J}= & \Delta \text { weight during storage } \div \text { length of storage }(\mathrm{hr})=2 \mathrm{~g} \div(7 \text { days } * 24 \mathrm{hr} / \text { day }) \\
& =2 \mathrm{~g} \div 168 \mathrm{hr}=\mathbf{0 . 0 1 2} \mathbf{g} / \mathbf{h r}=\mathbf{0 . 0 0 7 3 \%} / \mathbf{h r}
\end{aligned}
$$

What is the proportionality constant (K) for this commodity?

$$
\begin{aligned}
& \mathrm{J}=\mathrm{K} * \mathrm{VPD} \\
& \mathrm{~K}=\mathrm{J} / \mathrm{VPD}=0.0073 \% / \mathrm{hr} \div 1.1 \mathrm{kPa}=\mathbf{0 . 0 0 7 2 \%} / \mathbf{h r} \mathbf{k P a}
\end{aligned}
$$

If this commodity was then cooled to $5^{\circ} \mathrm{C}$ and stored at the $5^{\circ} \mathrm{C}$ cold room with a wet bulb temperature of $4^{\circ} \mathrm{C}$,
What is the relative humidity of the air (look up from the psychrometric chart)? $\mathbf{\sim 8 8 \%}$
What is the approximate VP of the room air at $5^{\circ} \mathrm{C}$ at the calculated RH (look up from the psychrometric chart)? $\sim \mathbf{0 . 7 2} \mathbf{~ k P a}$.
What is the approximate SVP at $5^{\circ} \mathrm{C} ? \sim \mathbf{0 . 8 8} \mathbf{~ k P a}$
What is the VPD? VPD $=\mathrm{SVP}_{\text {tissue }}-\mathrm{VP}_{\text {air }}=0.88-0.72=\mathbf{0 . 1 6} \mathbf{~ k P a}$.
What is the expected rate of water loss when this commodity is stored at $5^{\circ} \mathrm{C}$?

$$
\mathrm{J}=\mathrm{K} * \mathrm{VPD}=0.0072 \% / \mathrm{hr} \cdot \mathrm{kPa} * 0.16 \mathrm{kPa}=0.0012 \% / \mathrm{hr}
$$

Example Psychrometric and Water Loss Problems

Fall 2014
Explain the difference in water loss between spinach and apples stored at the same temperature.

Explain the difference in water loss from either commodity between storage at $20^{\circ} \mathrm{C}$ and $5^{\circ} \mathrm{C}$.

