Citrus Black Spot (Guignardia citricarpa): Identification, Biology and Control

Drs. Megan Dewdney and Natalia Peres

Fungal Disease

- Causal agent: Guignardia citricarpa
- Asexual name: Phyllosticta citricarpa
- Hosts: Citrus species and hybrids
- Symptomatic: Sweet oranges, mandarins and tangerines, lemons
- Non-symptomatic: ‘Tahiti’ lime
- Produces spores

Black Spot

- Rind spots cause the economic damage
 - internal quality unaffected
- Reduces fruit value for the fresh market
- Restricts export of fresh fruit
 - mostly to European countries and U.S
- Causes premature fruit drop reducing yield
 - Especially on late harvested cultivars

Symptoms Occur on Maturing Fruit

- Unusual to see hard spot more than 2 months before maturity
- Exposure to sunlight increases lesion number
 - Warm temps (~ 81F, 27C) also increase disease
- Symptoms generally occur on the ‘sunny side of trees’

Hard Spot

- The most characteristic symptom
 - If hard spot is found then likely some of the other symptoms will be as well
 - If scouting for disease concentrate on this symptom
- Small round sunken lesions with brick red-chocolate brown margin and tan center
 - Fungal structures often seen as slightly raised pencil-point dots
 - Can have green halo around lesion

Hard Spot
False Melanose

- Looks like melanose from a distance
 - Melanose is rough and is quite red
- False melanose is a large number of small slightly raised lesions with a smooth texture
 - Usually occurs in heavily infested groves
 - Can occur on green fruit
 - No fungal structures present
 - Can become hard spot later in season

Cracked Spot

- Reported to be interaction with rust mite damage
- Large, flat, dark brown lesions with raised cracks in their surface
 - Can become hard spot later in season
 - Occurs on green and mature fruit

Virulent Spot

- Early symptoms small reddish irregularly shaped lesions.
 - Can develop into either virulent spot or hard spot
- Virulent spot is the expansion and/or fusion of many lesions covering most of fruit surface
 - Many fungal structures present
 - Occurs only on mature fruit as well as post harvest in storage
Leaf and Stem Symptoms

- Leaf symptoms are uncommon in groves with good control but present when little or no control under taken
 - Lesions most commonly found on highly susceptible lemons
 - Can be found on any cultivar
- Small reddish-brown lesions
 - Tan center forms as lesions age
 - Old lesions have dark brown margin sometimes with large yellow halo

Black Spot Disease Cycle

1. **Leaf drop**
2. **Under leafflaw**
3. **Early symptom development**
4. **PYCNIDIA**
5. **CONIDIA**
6. **SPORES**
7. **PYCNIDIA**

Disease Cycle Highlights

- Major source of inoculum: decomposing infected leaves on orchard floor (ascospores)
- Additional source of inoculum: lesions on infected fruits, leaves and branches (conidia)
- Means of spread: Wind (ascospores); Water splash (ascospores and conidia)

Disease Cycle Highlights cont.

- Optimal conditions for infection:
 - Temperatures 70-90 F (21 – 32 C)
 - Wetting period 24 - 48h
- Symptom expression: 1 – 12 months
- Survival of the fungus: leaves, leaf litter branches, fruits and peduncles

Cultural Controls

- Minimize trash when picking to avoid inadvertent movement of the fungus from one location to another
- Increase air flow in trees to reduce leaf wetness where possible
- Avoid cultivars with significant off-season bloom
- Purchase clean nursery trees
- Reduce leaf litter to reduce ascospore load
Leaf Litter Reduction

- Work done with Greasy spot fungus *Mycosphaerella citri*
- Primary disease causing spores also formed in leaf litter
- Need to determine effect on *G. citricarpa*
- Found that litter/spores were reduced by 70-90% with urea (1 application), lime, ammonium sulfate and frequent irrigation
- Source of nitrogen important
 - Nitrate little to no effect

Black Spot Application Timing

- Fruit is susceptible for 5-6 months post-petal fall
- Use strobilurins when concerned about copper phytotoxicity

Conclusions of Study

- Better field control consistently lead to fewer postharvest affected fruit
- Storing fruit at low temperatures consistently lead to fewer symptomatic fruit
 - Once fruit in warm temperatures symptoms could appear
- Benomyl drenches were ineffective
- Fungicides dips and waxes were ineffective

Fungicides

- Must work with fungicides registered for citrus in Florida
- Reported efficacy in other countries
- Copper – all formulations found to be equivalent
- Strobilurins (Abound, Gem and Headline)

Postharvest Treatments

- High temperatures and intense light promote symptoms (~ 81°F; 27°C)
- Lemons from Argentina have been exposed to these conditions before export to USA
- Cool temperatures (46°F; 8°C) reduce disease in storage

Postharvest

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Montfort</th>
<th>Venezuela</th>
<th>Brazil</th>
<th>Lima</th>
<th>Chile</th>
<th>Argentina</th>
<th>Florida</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strobilurins</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Benomyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Copper</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Postharvest fertigation</td>
<td>No treatment</td>
<td>12.7</td>
<td>22.4</td>
<td>25.4</td>
<td>21.4</td>
<td>22.4</td>
<td>25.4</td>
</tr>
<tr>
<td>Fertilizer</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Furfurylacryloyl</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Phosphorous acid</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Potassium</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Phosphorous acid - drench</td>
<td>3.4</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Copper</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Strobilurins</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Headline</td>
<td>1.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

* 0.08 to 0.04 mg L⁻¹ in Florida
 - 0.08 to 0.04 mg L⁻¹ in Florida
 - 0.08 to 0.04 mg L⁻¹ in Florida

Agostini et al., 2006
Effects on Fungal Viability

- Tested humidity, fruit vs. peel, temperature and length of time in storage for effects on ability to isolate fungus

- Were able to isolate fungus after 40 days
- *G. citricarpa* was viable long after fruit not marketable
- No treatment had a significant effect

Agostini et al, 2006

Questions?