Some Disease Problems of Citrus Rootstocks

E. C. Calavan

Introduction

Except for certain disease problems, many citrus trees would be grown on their own roots or on seedling stocks of the same variety, thus eliminating many bud-union problems which are currently important as causes of decline and tree loss. Also, sweet orange and mandarin trees on their own roots are very tolerant of most forms of tristeza. There are several other diseases that are rootstock-related which is to say that rootstocks tolerant to these diseases usually exist. Two of the very worst diseases, stubborn and greening can effect all kinds of commercial scions so severely that they cannot be controlled by using disease-resistant rootstocks.

Let us take a look at some of the rootstock-related citrus disease problems in various parts of the word. We will concentrate on virus and mycoplasmalike diseases and their symptoms. We will also discuss some very severe disease problems unrelated to rootstock varieties. Symptoms of the diseases and varieties affected are shown in the Table 1 which follows this text.

Virus and Virus-Like Diseases

Tristeza. Tristeza probably has killed more trees than any other disease in the past 35 years, probably more than $\mathbf{3 0}$ million. Most of the losses occurred in Argentina, Brazil, Spain, and the United States. Some countries have not yet experienced extensive losses from tristeza. Australia, Japan, India, Indonesia, Philippines, Rhodesia, South Africa, and Taiwan are heavily infested with tristeza virus and have long used tristeza-resistant rootstocks such as rough lemon (India, Rhodesia, and South Africa), mandarin (Taiwan and Philippines) and trifoliate orange (Japan). Other countries, including those surrounding the Mediterranean (except Spain), Mexico and Central America, Chile, and part of the United States (Arizona, Texas, and parts of Califormia) still have littie or no tristeza present and still have millions of trees of the highly sensitive sweet orange/sour orange. Tristeza, if established in these areas, will eventually damage or destroy the trees of sweet orange/sour orange. Tristeza is known to be spreading now in Peru, Spain, Israel and the United States. It probably is spreading in Turkey. The disease has not yet killed half of the wordd's highly tristeza-sensitive trees.

Symptoms of tristeza are varied, depending on the strain of virus, the variety of host and the environment. Usually the sour orange phloem is damaged near the bud union producing a girdling effect which results in starvation of the roots and gradual decline of the top. Pinholing often occurs in the sour orange bark just below the union. Sometimes the quick decline effect with sudden wilting, occurs when a sudden and severe water stress develops. Starch disappears in the rootstock before it does in the top. All known forms of tristeza cause some vein clearing and stem pitting of Mexican lime at cool to moderate temperatures. There are some mild isolates of tristeza virus that cause little damage to trees on sour orange rootstock. Some other rather severe forms of tristeza are called seedling yellows, stem pitting, and 'Hassaku' dwarf.

Seedling yellows causes yellowing and stunting of lemon, sour orange and grapefruit seedlings and usually some vein corking of Mexican lime. It can damage mature trees of these varieties. Seedling yellows appears to be abundant in Brazil, Argentina, South Africa, Japan, India, Southeast Asia, Philippines, Australia, Hawaii, and Taiwan.

Stem pitting tristeza occurs on grapefruit and its close relatives, such as 'Hassaku', causing severe stem pitting, dwarfing of the plant, and small fruit size. Tristeza also causes extensive stem pitting of sweet lime and 'Alemow' rootstocks, badly damaging trees planted on these rootstocks. Stem pitting is most common in areas where Toxoptera citricidus (black citrus aphid') is the principal tristeza vector. In some localities stem pitting causes considerable damage to sweet orange as well as to grapefruit. Tristeza stem pitting of grapefruit and sweet orange is extremely rare in California and Florida but tristeza is now killing grapefruit trees on sour orange rootstock in both states. Where severe stem pitting of grapefruit or of limes is common it appears advisable to use a mild strain of tristeza for protection against stem pitting, as has been reported from Brazil. It is possib!e to obtain tristeza-free young trees ty using tristeza-free buds propagated on clean stocks. However, in heavily infested areas the young trees soon become infected with whatever isolates are being moved by vectors. In such situations inoculation with one or more isolates of tristeza virus mav be desirable.

Psorosis. The name psorosis is applied to a group of diseases that are believed to be related to each other; in addition to common psorosis there are blind pocket, crinkly leaf and infectious variegation, Satsuma dwarf, concave gum, enuptive gummosis and ringspot. Of these, crinkly leaf, infectious variegation and Satsuma dwarf are known to be caused by viruses.

Common psorosis causes pimpling and scaling of the bark of mature trees of sweet orange, grapefnuit, mandarin, and tangelo. Lemon, trifoliate orange, citranges, and limes may become infected but do not scale. In advanced stages the wood beneath lesions dies and discolors to develop the "woodform" of psorosis. Psorosis was once the most important citrus virus disease in Florida and California. Thanks to budwood programs it is becoming a minor disease except in old orchards.

Infectious variegation causes crinkled and puckered leaves and some leaf variegation but is less common than the very similar disease crinkly leaf. Lemons as well as oranges may be affected. Infected lemon fruits tend to be rougher than normal. Occasionally these viruses are seed transmitted.

Blind pocket causes abrupt depressions in trunks of affected trees and affects some trees of various varieties in California and Florida, but is easily avoided by using registered budwood.

Concave gum causes some stunting and results in formation of broad concavities on the trunk and large branches. An oakleaf pattern is normally associated with this disease.

Relatively little is known of eruptive gummosis and ringspot. Eruptive gumm osis and perhaps ringspot may be spread by an unknown vector. Their geographical distribution is incompletely determined but they appear to be present in South and North America.

Impietratura causes gumming in the peed of grapefruit and some other varieties in countries around the Mediterranean basin. A leaf symptom similar to that of psorosis is associated with it. There is proof of graft transmissibility but no proof of natural spread.

Satsuma dwarf has a leaf symptom similar to psorosis and causes downward bending of leaf margins on Satsuma trees in Japan and Turkey.

Fortunately most psorosis diseases can be completely avoided by using only registered psorosis-free seed and budwood materials.

Cachexia (Xyloporosis). Cachexia is important mostly on certain mandarin, mandarin lime, tangelo, 'Alemow', and sweet lime varieties when these varieties are used either as scions or as rootstocks. The virus can infect sweet orange, sour orange and grapefruit but causes little or no damage nor symptoms on these species. Cachexia infection is widespread in most of the citrus world in old budlines but, since it has apparently no means of natural spread, it usually is found in seedling lines only as a result of graft transmission. It is easily prevented by using cachexia-free stock but the most rapid indexing method requires about 6 months to a year.

Symptoms of cachexia are lens-shaped pits in the wood, especially on the trunk and rootstock, usually with gum impregnated irregularly in the bark, and pegs on the innerface of the bark. Severely affected trees usually have chlorotic foliage and are stunted. In stocks or trees such as 'Alemow' and 'Palestine Sweet lime' the symp toms closely resemble those of tristeza but cachexia pits are broader and the bark contains more gum than with tristeza infection.

Cachexia is relatively unimportant in California because most popular budlines are of seedling origin. However, 'Alemow', the principal rootstock for lemons, reacts severely when budded with cachexia-infected lemon buds. If there were an efficient vector present many lemon orchards would be nuined by cachexia. Budwood programs in Florida and California have done much to control cachexia.

Cristacortis symptoms are similar to those of cachexia but occur on sweet and sour orange scions and rootstocks. Pits are usually larger than for cachexia and gum deposits are present in the wood. Cristacortis has not been reported in the United States nor in most other citrus producing countries but is common in the Mediterranean area. No natural spread is known for cristacortis

Woody gall or vein enation. This virus disease causes rough woody galls on Citrus volkameriana rough lemon and on some other lemon and lime trees and rootstocks. Galls form especially at wounds on infected plants. Woody galls at the bud union are very common on rough lemon rootstocks in Peru but damage to the tree appears to be minor in most cases. Vein enations on the leaves are found mostly on young, vigorous trees and are rarely seen in the orchard. The woody gall virus is transmitted by aphids, including Toxoptera citricidus, Aphis gossypii, and Myzus persicae. The use of vein enation-free budwood in clean areas is advisable. In infested areas the use of clean budwood helps to imp rove the appearance of young trees on rough lemon rootstock but the trees soon become infected with the virus.

Stubborn. Stubborn is widespread in most arid and semiarid citrus areas of the world and has ruined several million trees during the past 40 years; it rarely kills trees but it lowers the quality and quantity of fruits. Stubborn is especially destructive in California and Arizona, in the warmer portions of Mediterranean countries, and in Peru.

The symptoms of stubborn are somewhat variable but include low yield, stunting, eccentric or acorn-shaped fruits, stylarend greening, blue al bedo, seed abortion, stiff, upright growth of leaves and stems, small and sometimes motted leaves, premature defoliation and drop of fruit in hot areas, and dieback in severely affected trees.

There are about 2 million stubborn-infected trees in California and probably at least that many in the Mediterranean. The disease spreads readily by vectors, as yet unidentified, in some California locations. The vectors are believed to be leafh oppers.

All commercial varieties of citrus appear to be susceptible to stubborn regardless of the rootstock used, but sweet orange, grapefruit, and tangelo are the species most frequently attacked. Lemon and lime trees are rarely attacked by the stubhorn pathogen.

The apparent pathogen of stubborn, Spiroplasma citri, is unique in that it is mycoplasmalike, has many forms, and can be cultured from diseased plants and from insects suspected of being vectors. The suspected pathogen is sensitive to tetracycline and to some other antibiotics. Thus far, attempts to control stubhom by antibiotic treatments have succeeded only with small plants grown in hydroponic solutions containing tetracyctine.

Most stubborn infections of importance occur in young trees less than 4 years of age or from infected budwood. In areas where natural spread is relatively slow stubborn can be controlled by planting clean trees and destroying visibly stubborni-diseased ones. It is not known whether plants other than citrus are hosts of stubborn.

Spiroplasma citri is smaller than most bacteria, motile at certain stages in citrus and insect hosts, and has a characteristic spiral form of very slender filaments at one stage of its development. In citrus this organism seems to be confined to the sieve tubes.

Greening. Greening is by far the most dangerous and destructive citrus disease in the word. Greening is called by various names including blotchy mottle in South Africa, leaf mottling or leaf mottle yellows in the Philippines, citrus decline in India, likubin in Taiwan, and yellow shoot in China. The symptoms resemble stubborn but greening is far more detrimental than stubborn to citrus trees. Greening is vectored by the psyllids Trioza erytreae in South Africa and nearby countries and by Diaphorina citri in southern, eastern and southeastern Asia, the Philippines and Indonesia. Greening is present in most of the tropical and warm subtropical citrus areas in the eastern hemisphere but has not been reported from the westem hemisphere. In the western hemisphere, only Brazil has reported having either of the psyllid vectors. Climatewise greening should do well if established in the western hemisphere, especially in Florida, Mexico and the Caribbean area.

Greening has completely ruined many millions of trees in the Orient and in South Africa during the past 20 years and continues to muin millions more. The apparent pathogen of greening is mycoplasmalike but it has a thicker covering around each cell, making it resemble bacteria in this respect. The greening organism apparently is more difficult to culture than is the stubborn organism.

Greening attacks all important varieties of citrus regardless of the rootstock variety on which they are propagated.
No control has been developed for greening but injections of tetracycline-HC1 appear to have improved tree condition and production of some greening-affected trees in South Africa. Reports from the Philippines indicate inactivation of the greening pathogen in mandarin orange budwood dipped in tetracycline solutions. In India promising results have been obtained by spraying tetracycline antibiotics on greening-infected citrus trees.

Budunion Disorders

Disorders at the bud union may severely damage or kill citrus trees. Some such disorders are due to transmissible pathogens; others for want of a better term are called incompatibilities and are apparently not transmissible.

Among the transmissible diseases causing bud-union disorders are tristeza and citrange stunt. The latter is rare, except that it is usually present in old budlines of 'Meyer' lemon and can cause a brown stain and crease at the bud unions of sweet orange or mandarin scions on citrange or trifoliate orange rootstocks.

Many scion-rootstock combinations are sometimes or always incompatible. Among the most common of these is sweet orange (especially blood orange) on rough lemon. This combination is rather variable in its performance, certain budlines on certain rough lemon seedlings are apparently fully compatible while others are slightly to severely affected.

Calamondins and kumquats are incompatible with most other citrus varieties and form a bud-union crease with highly abnormal xylem and phloem at the union. This disorder does not appear to be transmissible.

Some citranges and trifoliate oranges are highly incompatible with certain budlines of lemon, especially 'Eureka' and 'Villafranca' selections. There also seems to be considerable incompatibility between sour orange and some citranges. No scion rootstock combination can be considered fully compatible in any situation until it has been tested for $\mathbf{1 0}$ years or more in a given situation.

Maintenance of a strong, viable citrus industry in any country requires the prevention and/or control of severe diseases. Fungal and bacterial diseases may be controlled by cultural and pesticidal measures but graft-transmissible and bud-perpetuated diseases can best be controlled by the use of clean propagating materials, resistant or tolerant varieties and combinations, and by the replacement of worthless diseased trees with heal thy ones. In some areas severe diseases such as stubborn and greening cannot be controlled by any practical measures available at this time. Under such hopeless circumstances it is advisable to change to another crop.
Control
Avoid susceptible rootstocks, Use disease-
free budwood and seed.
Use disease-free propagative materials.
Use tolerant rootstocks and clean propaga-
tive materials. Sterilize cutting tools chemi-
cally to prevent mechanical transmission.

